Câu hỏi:

12/07/2024 16,501

Xét tính tăng, giảm của mỗi dãy số (un), biết:

a) \({u_n} = \frac{{n - 3}}{{n + 2}}\);

b) \({u_n} = \frac{{{3^n}}}{{{2^n}.n!}}\);

c) un = (– 1)n.(2n + 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có: \({u_{n + 1}} = \frac{{n + 1 - 3}}{{n + 1 + 2}} = \frac{{n - 2}}{{n + 3}}\)

Xét hiệu \({u_{n + 1}} - {u_n} = \frac{{n - 2}}{{n + 3}} - \frac{{n - 3}}{{n + 2}} = \frac{{{n^2} - 4 - {n^2} + 9}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{5}{{\left( {n + 3} \right)\left( {n + 2} \right)}} > 0,\forall n \in {\mathbb{N}^*}\).

Suy ra un+1 > un

Vì vậy dãy số đa cho là dãy số tăng.

b) Ta có: \({u_{n + 1}} = \frac{{{3^{n + 1}}}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} = \frac{{{{3.3}^n}}}{{2\left( {n + 1} \right){{.2}^n}.n!}} = \frac{3}{{2\left( {n + 1} \right)}}.{u_n}\)

Vì n * nên \(\frac{3}{{2\left( {n + 1} \right)}} < \frac{3}{2}\) suy ra un+1 < un.

Vì vậy dãy số đa cho là dãy số giảm.

c) Ta có: un+1 = (– 1)n+1.(2n+1 + 1)

+) Nếu n chẵn thì un+1 =  – (2.2n + 1) và un = 2n + 1. Do đó un+1 < un.

Vì vậy với n chẵn thì dãy số đã cho là dãy giảm.

+) Nếu n lẻ thì un+1 = 2.2n + 1 và un = – (2n + 1). Do đó un+1 > un.

Vì vậy với n chẵn thì dãy số đã cho là dãy tăng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Số tiền chị có trong ngân hàng sau 1 tháng là:

P1 = 100 + 100.0,5%  + 6 = 100,5 + 6 (triệu đồng).

b) Số tiền chị có trong ngân hàng sau 2 tháng là:

P2 = 100,5 + 6 + (100,5 + 6).0,5% + 6= (100,5 + 6)(1 + 0,5%) + 6 = 100,5(1 + 0,5%) + 6.(1 + 0,5%) + 6 (triệu đồng)

Số tiền chị có trong ngân hàng sau 3 tháng là:

P3 = (100,5 + 6)(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%) + 6 ].0,5% + 6

= 100,5.(1 + 0,5%)2 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 (triệu đồng).

c) Số tiền chị có trong ngân hàng sau 4 tháng là:

P4 = (100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6]0,5% + 6

= 100,5.(1 + 0,5%)3 + 6.(1 + 0,5%)3 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6

Số tiền chị có trong ngân hàng sau n tháng là:

Pn = 100,5.(1 + 0,5%)n-1 + 6(1 + 0,5%)n-1 + 6(1 + 0,5%)n-2 + 6.(1 + 0,5%)n-3 + ... + 6 với mọi n *.

Lời giải

Lời giải

a) Ta có: n * nên n ≥ 1 suy ra n2 + 2 ≥ 3

Do đó un ≥ 3

Vậy dãy số (un) bị chặn dưới bởi 3.

b) Ta có: n * nên n ≥ 1 suy ra un = – 2n + 1 ≤ – 1

Do đó un ≤ – 1.

Vậy dãy số (un) bị chặn trên bởi – 1.

c) Ta có: \({u_n} = \frac{1}{{{n^2} + n}} = \frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}\)

Vì n * nên n ≥ 1 suy ra \(\frac{1}{n} > \frac{1}{{n + 1}} \Rightarrow {u_n} = \frac{1}{n} - \frac{1}{{n + 1}} > 0\)

Ta lại có: \(\frac{1}{n} \le 1\) và \( - \frac{1}{{n + 1}} \le - \frac{1}{2}\) suy ra \({u_n} = \frac{1}{n} - \frac{1}{{n + 1}} \le 1 - \frac{1}{2} = \frac{1}{2}\)

Do đó \(0 < {u_n} \le \frac{1}{2}\)

Vậy dãy số (un) bị chặn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay