Câu hỏi:
11/07/2024 27,751
Chị Mai gửi tiền tiết kiệm vào ngân hàng theo thể thức lãi kép như sau. Lần đầu chị gửi 100 triệu động. Sau đó, cứ hết 1 tháng chị lại gửi thêm vào ngân hàng 6 triệu đồng. Biết lãi suất của ngân hàng là 0,5% một tháng. Gọi Pn (triệu đồng) là số tiền chị có trong ngân hàng sau n tháng.
a) Tính số tiền chị có trong ngân hàng sau 1 tháng.
b) Tính số tiền chị có trong ngân hàng sau 3 tháng.
c) Dự đoán công thức của Pn tính theo n.
Chị Mai gửi tiền tiết kiệm vào ngân hàng theo thể thức lãi kép như sau. Lần đầu chị gửi 100 triệu động. Sau đó, cứ hết 1 tháng chị lại gửi thêm vào ngân hàng 6 triệu đồng. Biết lãi suất của ngân hàng là 0,5% một tháng. Gọi Pn (triệu đồng) là số tiền chị có trong ngân hàng sau n tháng.
a) Tính số tiền chị có trong ngân hàng sau 1 tháng.
b) Tính số tiền chị có trong ngân hàng sau 3 tháng.
c) Dự đoán công thức của Pn tính theo n.
Câu hỏi trong đề: Giải SGK Toán 11 CD Bài 1. Dãy số có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Số tiền chị có trong ngân hàng sau 1 tháng là:
P1 = 100 + 100.0,5% + 6 = 100,5 + 6 (triệu đồng).
b) Số tiền chị có trong ngân hàng sau 2 tháng là:
P2 = 100,5 + 6 + (100,5 + 6).0,5% + 6= (100,5 + 6)(1 + 0,5%) + 6 = 100,5(1 + 0,5%) + 6.(1 + 0,5%) + 6 (triệu đồng)
Số tiền chị có trong ngân hàng sau 3 tháng là:
P3 = (100,5 + 6)(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%) + 6 ].0,5% + 6
= 100,5.(1 + 0,5%)2 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 (triệu đồng).
c) Số tiền chị có trong ngân hàng sau 4 tháng là:
P4 = (100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6]0,5% + 6
= 100,5.(1 + 0,5%)3 + 6.(1 + 0,5%)3 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6
Số tiền chị có trong ngân hàng sau n tháng là:
Pn = 100,5.(1 + 0,5%)n-1 + 6(1 + 0,5%)n-1 + 6(1 + 0,5%)n-2 + 6.(1 + 0,5%)n-3 + ... + 6 với mọi n ∈ ℕ*.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có: \({u_{n + 1}} = \frac{{n + 1 - 3}}{{n + 1 + 2}} = \frac{{n - 2}}{{n + 3}}\)
Xét hiệu \({u_{n + 1}} - {u_n} = \frac{{n - 2}}{{n + 3}} - \frac{{n - 3}}{{n + 2}} = \frac{{{n^2} - 4 - {n^2} + 9}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{5}{{\left( {n + 3} \right)\left( {n + 2} \right)}} > 0,\forall n \in {\mathbb{N}^*}\).
Suy ra un+1 > un
Vì vậy dãy số đa cho là dãy số tăng.
b) Ta có: \({u_{n + 1}} = \frac{{{3^{n + 1}}}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} = \frac{{{{3.3}^n}}}{{2\left( {n + 1} \right){{.2}^n}.n!}} = \frac{3}{{2\left( {n + 1} \right)}}.{u_n}\)
Vì n ∈ ℕ* nên \(\frac{3}{{2\left( {n + 1} \right)}} < \frac{3}{2}\) suy ra un+1 < un.
Vì vậy dãy số đa cho là dãy số giảm.
c) Ta có: un+1 = (– 1)n+1.(2n+1 + 1)
+) Nếu n chẵn thì un+1 = – (2.2n + 1) và un = 2n + 1. Do đó un+1 < un.
Vì vậy với n chẵn thì dãy số đã cho là dãy giảm.
+) Nếu n lẻ thì un+1 = 2.2n + 1 và un = – (2n + 1). Do đó un+1 > un.
Vì vậy với n chẵn thì dãy số đã cho là dãy tăng.
Lời giải
Lời giải
a) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra n2 + 2 ≥ 3
Do đó un ≥ 3
Vậy dãy số (un) bị chặn dưới bởi 3.
b) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra un = – 2n + 1 ≤ – 1
Do đó un ≤ – 1.
Vậy dãy số (un) bị chặn trên bởi – 1.
c) Ta có: \({u_n} = \frac{1}{{{n^2} + n}} = \frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}\)
Vì n ∈ ℕ* nên n ≥ 1 suy ra \(\frac{1}{n} > \frac{1}{{n + 1}} \Rightarrow {u_n} = \frac{1}{n} - \frac{1}{{n + 1}} > 0\)
Ta lại có: \(\frac{1}{n} \le 1\) và \( - \frac{1}{{n + 1}} \le - \frac{1}{2}\) suy ra \({u_n} = \frac{1}{n} - \frac{1}{{n + 1}} \le 1 - \frac{1}{2} = \frac{1}{2}\)
Do đó \(0 < {u_n} \le \frac{1}{2}\)
Vậy dãy số (un) bị chặn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.