Câu hỏi:

13/07/2024 644

Cho hình vuông ABCD. Lấy điểm E thuộc cạnh CD và điểm F thuộc tia đối của tia BC sao cho BF = DE.

Chứng minh I thuộc đường thẳng BD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD. Lấy điểm E thuộc cạnh CD Chứng minh I thuộc đường thẳng BD (ảnh 1)

Từ điểm F kẻ đường thẳng song song với CD cắt đường thẳng BD tại M.

Do ABCD là hình vuông nên \(\widehat {CBD} = \frac{{\widehat {CBA}}}{2} = \frac{{90^\circ }}{2} = 45^\circ \).

\(\widehat {FBM} = \widehat {CBD}\) (hai góc đối đỉnh), suy ra \(\widehat {FBM} = 45^\circ \).

Do MF // CD nên \(\widehat {BFM} = \widehat {BCD} = 90^\circ \) (cặp góc so le trong).

Tam giác FBM có \(\widehat {BFM} = 90^\circ \)\(\widehat {FBM} = 45^\circ \) nên tam giác FBM vuông cân tại F.

Suy ra MF = BF.

Mà BF = DE, suy ra MF = DE.

Tứ giác DEMF có MF = DE và MF // DE nên DEMF là hình bình hành.

Mà I là trung điểm của EF, suy ra I là trung điểm của DM.

Vậy I thuộc đường thẳng DM hay I thuộc đường thẳng BD.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Ở phía ngoài hình bình hành, vẽ các hình vuông ABEF và ADGH (Hình 26).

Cho hình bình hành ABCD. Ở phía ngoài hình Chứng minh AC vuông góc HF (ảnh 1)

Chứng minh:

AC HF.

Xem đáp án » 13/07/2024 1,949

Câu 2:

Cho hình vuông ABCD có hai đường chéo AC và BD cắt nhau tại O. Trên tia đối của tia CB lấy điểm K sao cho BC = CK. Từ điểm B kẻ đường thẳng song song với AC cắt tia DC tại E. Gọi F là trung điểm của BE.

Chứng minh các tứ giác BOCF và BDKE đều là hình vuông.

Xem đáp án » 13/07/2024 1,620

Câu 3:

Cho tam giác ABC có các đường trung tuyến BD, CE cắt nhau tại G. Gọi F, H lần lượt là trung điểm của BG, CG.

Tìm điều kiện của tam giác ABC để tứ giác EFHD là hình vuông.

Xem đáp án » 13/07/2024 1,272

Câu 4:

Cho hình vuông ABCD có AB = 12 cm. Trên cạnh CD lấy điểm E sao cho DE = 5 cm. Tia phân giác của góc BAE cắt BC tại F. Trên tia đối của tia BC lấy điểm M sao cho BM = DE.

Tính độ dài BF.

Xem đáp án » 13/07/2024 1,213

Câu 5:

Cho tam giác ABC có các đường trung tuyến BD, CE cắt nhau tại G. Gọi F, H lần lượt là trung điểm của BG, CG.

Tứ giác EFHD là hình gì? Vì sao?

Xem đáp án » 13/07/2024 899

Câu 6:

Cho hình vuông ABCD. Lấy điểm E thuộc cạnh CD và điểm F thuộc tia đối của tia BC sao cho BF = DE.

Gọi I là trung điểm của EF. Trên tia đối của tia IA lấy điểm K sao cho IK = IA. Chứng minh tứ giác AEKF là hình vuông.

Xem đáp án » 13/07/2024 830

Câu 7:

Cho hình vuông ABCD có AB = 12 cm. Trên cạnh CD lấy điểm E sao cho DE = 5 cm. Tia phân giác của góc BAE cắt BC tại F. Trên tia đối của tia BC lấy điểm M sao cho BM = DE.

Chứng minh AE = AM = FM.

Xem đáp án » 13/07/2024 828
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua