Câu hỏi:

13/07/2024 6,172 Lưu

Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 3,6 cm HC = 6,4 cm.

​a) Tính AB, AC, AH.

​b) Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh AB.AE = AC.AF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Áp dụng hệ thức lượng trong tam giác:

AC2 = HC.BC AC = HC.BC  = 8 (cm )

AB^2 = HB.BC AB = HB.BC  = 6 ( cm )

AH.BC = AB.AC AH = AB.AC : BC = 4,8(cm)

b, Trong tam giác vuông HAB, đường cao HE ta có : HA2 = AB.AE (1)

Trong tam giác vuông HAC, đường cao HF ta có : HA2 = AC.AF (2)

Từ (1) và (2) ta có : AB.AE = AC.AF (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Giả sử: Đường thẳng (d) có vectơ chỉ phương  u=a;b

 đường thẳng (d) có vectơ pháp tuyến n=b;a  hoặc n=b;a

Câu 2

Lời giải

1 cm3 = 10-3 dm3 = 10-6 m3 = 0,000001 m3

Như vậy để đổi cm3 sang m3 trên máy tính ta lấy đơn vị cm3 nhân với 10-6 hoặc chia cho 1000000.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP