Câu hỏi:

13/07/2024 4,771

Cho hình vẽ, có \(\widehat {BAC}\) = 50°, \(\widehat {ABC}\) = 65°, Ax // BC.

a) Tính số đo \(\widehat {ACB}\).

b) Tính số đo \(\widehat {yAx}\) rồi chứng minh Ax là tia phân giác của \(\widehat {yAC}\).

c) Vẽ tia Az là tia đối của tia Ax, tia Am là tia phân giác của zAB, tia Bn là tia phân giác của \(\widehat {ABC}\). Chứng minh Am // Bn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vẽ, có góc BAC = 50 độ, AbC = 65 độ, Ax // BC. a) Tính số đo góc ACB (ảnh 1)

a) Xét tam giác ABC có:

\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB}\) = 180°

50° + 65° + \(\widehat {ACB}\)= 180°

\(\widehat {ACB}\)= 65°

b) Do Ax // BC nên \(\widehat {ACB} = \widehat {CAx} = 65^\circ \)(so le trong)

Suy ra: \(\widehat {BAx} = 50^\circ + 65^\circ = 115^\circ \)

Ta có: \(\widehat {BAx} + \widehat {yAx} = 180^\circ \)

\(\widehat {yAx} = 180^\circ - 115^\circ = 65^\circ \)

Suy ra: \(\widehat {yAx} = \widehat {CAx} = 65^\circ \)nên Ax là tia phân giác \(\widehat {yAC}\)

c) Do Az là tia đối của Ax nên \(\widehat {xAz} = 180^\circ \)

Lại có: \(\widehat {xAz} = \widehat {BAx} + \widehat {BAz}\)

Suy ra: \(\widehat {BAz} = 180^\circ - 115^\circ = 65^\circ \)

Do Am là phân giác của \(\widehat {BAz}\)

nên \[\widehat {BAm} = \frac{1}{2}\widehat {BAz} = \frac{1}{2}.65^\circ = 32,5^\circ \]

Mặt khác: Bn là phân giác của \(\widehat {ABC}\)

nên \[\widehat {ABn} = \frac{1}{2}\widehat {ABC} = \frac{1}{2}.65^\circ = 32,5^\circ \]

Do đó: \[\widehat {BAm} = \widehat {ABn}\]mà 2 góc này ở vị trí so le trong

Nên Am // Bn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với  (ảnh 1)

a) Vì MA, MB là tiếp tuyến của (O)

\(\widehat {MAO} = \widehat {MBO} = 90^\circ \)

Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)

A, O, B, M thuộc đường tròn đường kính OM.

AOBM nội tiếp đường tròn đường kính OM.

Tâm G là trung điểm OM

b. Vì MA là tiếp tuyến của (O)

\(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)

Lại có \(\widehat M\)chung.

Do đó, ΔMAC ΔMDA(g.g)

\(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)

MA2 = MC.MD.

c) Vì I là trung điểm CD  OI CD

OI MI

I thuộc đường tròn đường kính OM

I (G)

M, A, O, I, B (G).

d) Vì MA, MB là tiếp tuyến của (O)

Nên MA = MB, MO là phân giác \[\widehat {AMB}\]

ΔMAB có MO vừa là phân giác vừa là đường cao.

MO AB

Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:

MA2 = MH.MO (kết hợp b)

MH.MO = MC.MD

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

Xét ΔMCH và ΔMOD có:

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

\(\widehat M\)chung

Do đó, ΔMCH ΔMOD (c.g.c).

\(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)

CHOD nội tiếp

e) Gọi CD ∩ AB = F

\(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)

Ta có: A, M, B, O, I (G)

\(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)

\(\widehat {AIF} = \widehat {AEB}\)

ΔAIF ΔAEB (g.g).

\(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)

A, I, E thẳng hàng.

Lời giải

Để đo chiều cao h của cổng parabol của trường ĐHBK Hà Nội, người ta đo khoảng cách giữa (ảnh 1)

AB = 9m

AC = 0,5m

CD = 1,6m

Gọi O là trung điểm của A

Dựng hệ Oxy thỏa mãn A,B thuộc Ox và Oy AB tại O

OB = \(\frac{9}{2}\), OC = \(\frac{9}{2} - 0,5 = 4\)

Cổng là (P) có phương trình dạng y = ax2 + b

Có: \(\left\{ \begin{array}{l}B = \left( {\frac{9}{2};0} \right) \in \left( P \right)\\D = \left( { - 4;1,6} \right) \in \left( P \right)\end{array} \right.\)

\(\left\{ \begin{array}{l}0 = a.{\left( {\frac{9}{2}} \right)^2} + b\\1,6 = a.{\left( { - 4} \right)^2} + b\end{array} \right.\)

\(\left\{ \begin{array}{l}a = \frac{{ - 32}}{{85}}\\b = \frac{{648}}{{85}}\end{array} \right.\)

Tung độ ứng với hoành độ bằng 0 là y = a.02 + b = \(\frac{{648}}{{85}}\)

Vậy chiều cao của cổng Parabol là \(\frac{{648}}{{85}} \approx 7,6m.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP