Câu hỏi:
13/07/2024 2,106
Cho đường tròn (O), đường kính AB, điểm M nằm trên (O). Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.
a) Chứng minh rằng NE ⊥ AB.
b) Gọi F là điểm đối xứng với E qua M. Chứng minh rằng FA là tiếp tuyến của đường tròn (O).
c) Chứng minh rằng FN là tiếp tuyến của đường tròn (B; BA).
Cho đường tròn (O), đường kính AB, điểm M nằm trên (O). Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.
a) Chứng minh rằng NE ⊥ AB.
b) Gọi F là điểm đối xứng với E qua M. Chứng minh rằng FA là tiếp tuyến của đường tròn (O).
c) Chứng minh rằng FN là tiếp tuyến của đường tròn (B; BA).
Quảng cáo
Trả lời:

a) Tam giác ABM nội tiếp trong đường tròn (O) có AB là đường kính nên tam giác ABM vuông tại M
⇒ AM ⊥ BM ⇒ AN ⊥ BM tại M
Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên tam giác ABC vuông tại C
⇒ AC ⊥ CB
⇒ AC ⊥ BN tại C
Tam giác ABN có hai đường cao AC và BM cắt nhau tại E nên E là trọng tâm của tam giác ABN
Suy ra: NE ⊥ AB.
b) Ta có:
MA = MN (tính chất đối xứng tâm)
ME = MF (tính chất đối xứng tâm)
Do đó, tứ giác AENF có hai đường chéo AN và FE cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành
⇒ AF // NE
Mà NE AB (chứng minh trên)
⇒ AF ⊥ AB tại A
Vậy FA là tiếp tuyến của đường tròn (O).
c) Trong tam giác ABN ta có:
AN ⊥ BM và MN = AM
Do đó BM vừa là đường cao vừa là đường trung tuyến
Do đó, tam giác ABN cân tại B
⇒ BA = BN
Do đó N thuộc đường tròn (B; BA)
Tứ giác AFNE là hình bình hành
nên AE // FN hay FN // AC
Mặt khác: AC ⊥ BN (chứng minh trên)
⇒ FN ⊥ BN tại N
Vậy FN là tiếp tuyến của đường tròn (B; BA).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì MA, MB là tiếp tuyến của (O)
⇒ \(\widehat {MAO} = \widehat {MBO} = 90^\circ \)
Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)
⇒ A, O, B, M thuộc đường tròn đường kính OM.
⇒ AOBM nội tiếp đường tròn đường kính OM.
Tâm G là trung điểm OM
b. Vì MA là tiếp tuyến của (O)
⇒ \(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)
Lại có \(\widehat M\)chung.
Do đó, ΔMAC ∽ ΔMDA(g.g)
⇒ \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)
⇒ MA2 = MC.MD.
c) Vì I là trung điểm CD ⇒ OI ⊥ CD
⇒ OI ⊥ MI
⇒ I thuộc đường tròn đường kính OM
⇒ I ∈ (G)
⇒ M, A, O, I, B ∈ (G).
d) Vì MA, MB là tiếp tuyến của (O)
Nên MA = MB, MO là phân giác \[\widehat {AMB}\]
⇒ ΔMAB có MO vừa là phân giác vừa là đường cao.
⇒ MO ⊥ AB
Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:
⇒ MA2 = MH.MO (kết hợp b)
⇒ MH.MO = MC.MD
⇒ \(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
Xét ΔMCH và ΔMOD có:
\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
\(\widehat M\)chung
Do đó, ΔMCH ∽ ΔMOD (c.g.c).
⇒ \(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)
⇒ CHOD nội tiếp
e) Gọi CD ∩ AB = F
⇒ \(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)
Ta có: A, M, B, O, I ∈ (G)
⇒ \(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)
⇒ \(\widehat {AIF} = \widehat {AEB}\)
⇒ ΔAIF ∽ ΔAEB (g.g).
⇒ \(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)
⇒ A, I, E thẳng hàng.
Lời giải

AB = 9m
AC = 0,5m
CD = 1,6m
Gọi O là trung điểm của A
Dựng hệ Oxy thỏa mãn A,B thuộc Ox và Oy ⊥ AB tại O
OB = \(\frac{9}{2}\), OC = \(\frac{9}{2} - 0,5 = 4\)
Cổng là (P) có phương trình dạng y = ax2 + b
Có: \(\left\{ \begin{array}{l}B = \left( {\frac{9}{2};0} \right) \in \left( P \right)\\D = \left( { - 4;1,6} \right) \in \left( P \right)\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}0 = a.{\left( {\frac{9}{2}} \right)^2} + b\\1,6 = a.{\left( { - 4} \right)^2} + b\end{array} \right.\)
⇔\(\left\{ \begin{array}{l}a = \frac{{ - 32}}{{85}}\\b = \frac{{648}}{{85}}\end{array} \right.\)
Tung độ ứng với hoành độ bằng 0 là y = a.02 + b = \(\frac{{648}}{{85}}\)
Vậy chiều cao của cổng Parabol là \(\frac{{648}}{{85}} \approx 7,6m.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.