Câu hỏi:
13/07/2024 3,367Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD // BC và AD = 2BC. Lấy M trên cạnh SA sao cho MA = 2MS.
a) Chứng minh OM // (SCD).
b) Xác định giao điểm N của MD và mặt phẳng (SBC).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Do AD // BC nên \(\frac{{AO}}{{OC}} = \frac{{AD}}{{BC}} = 2\)
Mà \(\frac{{AM}}{{MS}} = 2\) nên \(\frac{{AM}}{{MS}} = \frac{{AO}}{{OC}} = 2\)
⇒ OM // SC (định lí Ta–let)
Lại có SC ⊂ (SCD) nên OM // (SCD)
b) Ta có: MD ⊂ (SAD)
* Tìm giao tuyến của (SBC) với (SAD)
Ta có: S ∈ (SAD) ∩ (SBC)
Lại có: \(\left\{ \begin{array}{l}AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\\AD\parallel BC\end{array} \right.\) ⇒ (SAD) ∩ (SBC) = Sx // AD // BC.
Do đó giao tuyến của (SBC) với (SAD) là đường thẳng đi qua S và song song với AD, BC.
Trong mặt phẳng (SAD), gọi N là giao điểm của MD với Sx.
Khi đó \(\left\{ \begin{array}{l}N \in MD\\N \in Sx \subset \left( {SBC} \right)\end{array} \right.\) ⇒ N = MD ∩ (SBC).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!