Câu hỏi:
13/07/2024 4,191Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A kẻ tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm).
a) Chứng minh rằng tứ giác AMON nội tiếp.
b) Vẽ cát tuyến ABC tới đường tròn (O) (Tia AO nằm giữa AM và tia AC).
Chứng minh rằng AM2 = AB.AC.
c) Gọi H là giao điểm AO và MN. Chứng minh rằng tứ giác BHOC nội tiếp.
Quảng cáo
Trả lời:
a) \(\widehat {OMA} = \widehat {ONA} = 90^\circ \)(vì AM, AN là tiếp tuyến của (O))
Xét tứ giác OMAN có: \(\widehat {OMA} + \widehat {ONA} = 180^\circ \)
Do đó: OMAN là tứ giác nội tiếp
hay O, M, A, N cùng thuộc 1 đường tròn
b) Xét tam giác AMB và tam giác ACM có:
\(\widehat {MAC}\)là góc chung
\(\widehat {MCA} = \widehat {BMA}\)(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung)
Suy ra: ∆AMB ∽ ∆ACM (g.g)
⇒ \(\frac{{AM}}{{AC}} = \frac{{AB}}{{AM}}\) hay AM2 = AB.AC
c) Ta có: OM = ON = R
MA = NA (tính chất hai tiếp tuyến cắt nhau)
Khi đó OA là trung trực của MN.
Suy ra: OA vuông góc MN
Xét tam giác OMA vuông tại M có đường cao MH, ta cóL
MA2 = AH.AO
Mà AM2 = AB.AC nên AH.AO = AB.AC
Suy ra: \(\frac{{AB}}{{AO}} = \frac{{AH}}{{AC}}\)
Xét ∆ABH và ∆AOC có:
\(\frac{{AB}}{{AO}} = \frac{{AH}}{{AC}}\)
\(\widehat {OAC}\)là góc chung
⇒ ∆ABH ∽ ∆AOC (c.g.c)
⇒ \(\widehat {AHB} = \widehat {ACO}\)(hai góc tương ứng)
Do đó tứ giác BHOC nội tiếp.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 986
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Để đo chiều cao h của cổng parabol của trường ĐHBK Hà Nội, người ta đo khoảng cách giữa 2 chân cổng được L = 9 m, người ta thấy nếu đứng cách chân cổng 0,5 m thì đầu chạm cổng, biết người này cao 1,6 m. Tính chiều cao của cổng.
Câu 3:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 5:
Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC có A(–1;1), B(1;3) và trọng tân là G\(\left( { - 2;\frac{2}{3}} \right)\). Tìm tọa độ điểm M trên tia Oy sao cho tam giác MBC vuông tại M.
Câu 6:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 7:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận