Câu hỏi:
13/07/2024 1,642Cho ΔMNP có I là trung điểm cạnh NP. Trên tia đối của IM lấy D sao cho IM = ID.
a) Chứng minh ΔMIN = ΔDIP.
b) Chứng minh MN // DP.
c) Gọi H là trung điểm MN, vẽ E sao cho H là trung điểm của PE. Chứng minh N là trung điểm của ED.
Quảng cáo
Trả lời:
a) Xét ΔMIN và ΔDIP có:
IM = ID (giả thiết)
\(\widehat {MIN} = \widehat {PID}\)(đối đỉnh)
NI = IP
Suy ra: ΔMIN = ΔDIP (c.g.c)
b) Theo phần a có ΔMIN = ΔDIP nên MN = PD và \(\widehat {MNI} = \widehat {IPD}\)(hai cạnh và hai góc tương ứng)
Mà hai góc \(\widehat {MNI},\widehat {IPD}\) ở vị trí so le trong nên MN // PD
c) Xét ΔMIP và ΔDIN có:
MI = ID
\(\widehat {MIP} = \widehat {NID}\)(đối đỉnh)
IP = IN
Suy ra: ΔMIP = ΔDIN (c.g.c)
⇒ \(\widehat {IND} = \widehat {IPM}\)(hai góc tương ứng)
Suy ra: ND // MP (*) và ND = MP (1)
Xét ΔEHN và ΔPHM có:
HE = HP (giả thiết)
\(\widehat {EHN} = \widehat {MHP}\)(đối đỉnh)
HM = HN (giả thiết)
Suy ra: ΔEHN = ΔPMH (c.g.c)
⇒ \(\widehat {HMP} = \widehat {HNE}\)(hai góc tương ứng) và EN = MP (2)
Mà hai góc \(\widehat {MNI},\widehat {IPD}\) ở vị trí so le trong nên NE // MP (**)
Từ (*) và (**) suy ra: ND trùng NE hay E, N, D thẳng hàng
Từ (1) và (2) suy ra: NE = ND
Vậy N là trung điểm ED.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì MA, MB là tiếp tuyến của (O)
⇒ \(\widehat {MAO} = \widehat {MBO} = 90^\circ \)
Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)
⇒ A, O, B, M thuộc đường tròn đường kính OM.
⇒ AOBM nội tiếp đường tròn đường kính OM.
Tâm G là trung điểm OM
b. Vì MA là tiếp tuyến của (O)
⇒ \(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)
Lại có \(\widehat M\)chung.
Do đó, ΔMAC ∽ ΔMDA(g.g)
⇒ \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)
⇒ MA2 = MC.MD.
c) Vì I là trung điểm CD ⇒ OI ⊥ CD
⇒ OI ⊥ MI
⇒ I thuộc đường tròn đường kính OM
⇒ I ∈ (G)
⇒ M, A, O, I, B ∈ (G).
d) Vì MA, MB là tiếp tuyến của (O)
Nên MA = MB, MO là phân giác \[\widehat {AMB}\]
⇒ ΔMAB có MO vừa là phân giác vừa là đường cao.
⇒ MO ⊥ AB
Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:
⇒ MA2 = MH.MO (kết hợp b)
⇒ MH.MO = MC.MD
⇒ \(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
Xét ΔMCH và ΔMOD có:
\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
\(\widehat M\)chung
Do đó, ΔMCH ∽ ΔMOD (c.g.c).
⇒ \(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)
⇒ CHOD nội tiếp
e) Gọi CD ∩ AB = F
⇒ \(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)
Ta có: A, M, B, O, I ∈ (G)
⇒ \(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)
⇒ \(\widehat {AIF} = \widehat {AEB}\)
⇒ ΔAIF ∽ ΔAEB (g.g).
⇒ \(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)
⇒ A, I, E thẳng hàng.
Lời giải
AB = 9m
AC = 0,5m
CD = 1,6m
Gọi O là trung điểm của A
Dựng hệ Oxy thỏa mãn A,B thuộc Ox và Oy ⊥ AB tại O
OB = \(\frac{9}{2}\), OC = \(\frac{9}{2} - 0,5 = 4\)
Cổng là (P) có phương trình dạng y = ax2 + b
Có: \(\left\{ \begin{array}{l}B = \left( {\frac{9}{2};0} \right) \in \left( P \right)\\D = \left( { - 4;1,6} \right) \in \left( P \right)\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}0 = a.{\left( {\frac{9}{2}} \right)^2} + b\\1,6 = a.{\left( { - 4} \right)^2} + b\end{array} \right.\)
⇔\(\left\{ \begin{array}{l}a = \frac{{ - 32}}{{85}}\\b = \frac{{648}}{{85}}\end{array} \right.\)
Tung độ ứng với hoành độ bằng 0 là y = a.02 + b = \(\frac{{648}}{{85}}\)
Vậy chiều cao của cổng Parabol là \(\frac{{648}}{{85}} \approx 7,6m.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)