Câu hỏi:
15/08/2023 154Giải phương trình: \(x\sqrt {x + 1} + \sqrt {3 - x} = 2\sqrt {{x^2} + 1} \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng bất đẳng thức Bunhia ta có:
\[x\sqrt {x + 1} + \sqrt {3 - x} \le \sqrt {\left( {{x^2} + 1} \right)\left( {x + 1 + 3 - x} \right)} = \sqrt {4\left( {{x^2} + 1} \right)} = 2\sqrt {{x^2} + 1} \]
Nghĩa là vế trái luôn ≤ vế phải
Vậy dấu “=” xảy ra khi: \(\frac{x}{{\sqrt {x + 1} }} = \frac{1}{{\sqrt {3 - x} }}\)(điều kiện: –1 < x < 3)
⇔ x2(3 – x) = x + 1
⇔ 3x2 – x3 – x – 1 = 0
⇔ –x3 + 3x2 – x – 1 = 0
⇔ (x – 1)(–x2 + 2x + 1) = 0
⇔ \(\left[ \begin{array}{l}x = 1\\ - {x^2} + 2x + 1 = 0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x = 1\\x = \sqrt 2 + 1\\x = - \sqrt 2 + 1\end{array} \right.\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!