Câu hỏi:
13/07/2024 2,291Cho hàm số bậc nhất: y = (2m – 3)x – 1 (d). Tìm m để:
a. Hàm số là hàm số bậc nhất đồng biến, nghịch biến.
b. Đồ thị của (d) đi qua điểm (–2; 3).
c. Đồ thị của (d) là một đường thẳng song song với đường thẳng 3x – y = 1.
d. Đồ thị của (d) đồng quy với 2 đường thẳng : y = 2x – 4 và y = x + 1.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Hàm số là hàm số bậc nhất đồng biến, nghịch biến.
– Để hàm số trên là hàm số bậc nhất
⇒ 2m – 3 ≠ 0
⇒ m ≠ \(\frac{3}{2}\)
– Để hàm số trên là hàm số đồng biến
⇒ 2m – 3 > 0
⇒ m > \(\frac{3}{2}\)
Để hàm số trên là hàm số nghịch biến
⇒ 2m – 3 < 0
⇒ m < \(\frac{3}{2}\)
b. Đồ thị của (d) đi qua điểm (–2; 3)
Vì đồ thị của (d) đi qua điểm (–2; 3) ⇒ x = –2, y = 3
⇒ 3 = (2m – 3). (–2) –1
⇒ m = \(\frac{1}{2}\)
c. Đồ thị của (d) là một đường thẳng song song với đường thẳng 3x – y =1
Vì đồ thị của (d) là một đường thẳng song song với đường thẳng 3x – y =1
⇒ 2m – 3 = 3
⇒ m = 3
d. Đồ thị của (d) đồng quy với 2 đường thẳng : y = 2x – 4 và y = x + 1
Gọi I là giao điểm 2 đường thẳng : y = 2x – 4 và y = x + 1
Vì 2 đường thẳng : y = 2x – 4 và y = x + 1 cắt nhau nên ta có phương trình tọa độ giao điểm:
2x – 4 = x + 1
⇒ x = 5
⇒ y = 6
⇒ I (5 ; 6)
Vì đồ thị của (d) đồng quy với 2 đường thẳng : y = 2x – 4 và y = x + 1
Suy ra: I (5; 6) thuộc (d)
Thay vào x = 5, y = 6 vào (d), ta được:
6 = (2m – 3). 5 – 1
⇒ m = \(\frac{{11}}{5}\)
Vậy m = \(\frac{{11}}{5}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!