Một người ăn kiêng muốn trộn hai loại thức ăn A và B, để tạo ra một hỗn hợp chứa ít nhất 50 g protein, ít nhất 130 mg canxi và không quá 550 calo. Giá trị dinh dưỡng của thức ăn loại A và loại B được cho trong bảng sau:
Thức ăn
Protein (g/ly)
Canxi (mg/ly)
Calo (ly)
A
20
20
100
B
10
50
150
Một người ăn kiêng muốn trộn hai loại thức ăn A và B, để tạo ra một hỗn hợp chứa ít nhất 50 g protein, ít nhất 130 mg canxi và không quá 550 calo. Giá trị dinh dưỡng của thức ăn loại A và loại B được cho trong bảng sau:
Thức ăn |
Protein (g/ly) |
Canxi (mg/ly) |
Calo (ly) |
A |
20 |
20 |
100 |
B |
10 |
50 |
150 |
Quảng cáo
Trả lời:

Gọi số ly thức ăn loại A và B cần trộn lần lượt là x, y (x, y ∈ ℕ)
Số tiền cần bỏ ra:
F(x; y) = 120000x + 50000y
Hỗn hợp chứa ít nhất 50g protein
⇒ 20x + 10y ≥ 50
⇔ 2x + y ≥ 5
Hỗn hợp chứa ít nhất 130 mg canxi
⇒ 20x + 50y ≥ 130
⇔ 2x + 5y ≥ 13
Hỗn hợp không quá 550 calo
⇒100x + 150y ≤ 550
⇔ 2x + 3y ≤ 11
Ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \ge 5\\2x + 5y \ge 13\\2x + 3y \le 11\end{array} \right.\)
Miền nghiệm của hệ biểu diễn bởi phần mặt phẳng không màu trên hình vẽ, kể cả các biên giới hạn

F(x; y) nhỏ nhất khi (x; y) là toạ độ một trong số các điểm A(1,5; 2); B(1; 3); C(4; 1)
Thay vào F(x; y) ta thấy F(x; y) nhỏ nhất khi x = 1, y = 3
Vậy người đó cần dùng 1 ly loại A, 3 ly loại B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì MA, MB là tiếp tuyến của (O)
⇒ \(\widehat {MAO} = \widehat {MBO} = 90^\circ \)
Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)
⇒ A, O, B, M thuộc đường tròn đường kính OM.
⇒ AOBM nội tiếp đường tròn đường kính OM.
Tâm G là trung điểm OM
b. Vì MA là tiếp tuyến của (O)
⇒ \(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)
Lại có \(\widehat M\)chung.
Do đó, ΔMAC ∽ ΔMDA(g.g)
⇒ \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)
⇒ MA2 = MC.MD.
c) Vì I là trung điểm CD ⇒ OI ⊥ CD
⇒ OI ⊥ MI
⇒ I thuộc đường tròn đường kính OM
⇒ I ∈ (G)
⇒ M, A, O, I, B ∈ (G).
d) Vì MA, MB là tiếp tuyến của (O)
Nên MA = MB, MO là phân giác \[\widehat {AMB}\]
⇒ ΔMAB có MO vừa là phân giác vừa là đường cao.
⇒ MO ⊥ AB
Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:
⇒ MA2 = MH.MO (kết hợp b)
⇒ MH.MO = MC.MD
⇒ \(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
Xét ΔMCH và ΔMOD có:
\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
\(\widehat M\)chung
Do đó, ΔMCH ∽ ΔMOD (c.g.c).
⇒ \(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)
⇒ CHOD nội tiếp
e) Gọi CD ∩ AB = F
⇒ \(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)
Ta có: A, M, B, O, I ∈ (G)
⇒ \(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)
⇒ \(\widehat {AIF} = \widehat {AEB}\)
⇒ ΔAIF ∽ ΔAEB (g.g).
⇒ \(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)
⇒ A, I, E thẳng hàng.
Lời giải

AB = 9m
AC = 0,5m
CD = 1,6m
Gọi O là trung điểm của A
Dựng hệ Oxy thỏa mãn A,B thuộc Ox và Oy ⊥ AB tại O
OB = \(\frac{9}{2}\), OC = \(\frac{9}{2} - 0,5 = 4\)
Cổng là (P) có phương trình dạng y = ax2 + b
Có: \(\left\{ \begin{array}{l}B = \left( {\frac{9}{2};0} \right) \in \left( P \right)\\D = \left( { - 4;1,6} \right) \in \left( P \right)\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}0 = a.{\left( {\frac{9}{2}} \right)^2} + b\\1,6 = a.{\left( { - 4} \right)^2} + b\end{array} \right.\)
⇔\(\left\{ \begin{array}{l}a = \frac{{ - 32}}{{85}}\\b = \frac{{648}}{{85}}\end{array} \right.\)
Tung độ ứng với hoành độ bằng 0 là y = a.02 + b = \(\frac{{648}}{{85}}\)
Vậy chiều cao của cổng Parabol là \(\frac{{648}}{{85}} \approx 7,6m.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.