Câu hỏi:
12/07/2024 360Cho tam giác ABC có AB = AC. Lấy hai điểm D, E thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE.
a) Chứng minh \(\widehat {EAB}\) = \(\widehat {DAC}\).
b) Gọi M là trung điểm của BC. Chứng minh AM là phân giác của góc \(\widehat {DAE}\).
c) Gỉa sử \(\widehat {DAE} = 60^\circ \). Tính các góc còn lại của tam giác ADE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: BE = BD + DE = DE + DE = 2DE (do BD = DE giả thiết)
DC = DE + EC = DE + DE = 2DE (do DE = EC giải thiết)
⇒ BE = DC
Xét ΔABE và ΔACD có:
AB = AC (giả thiết)
AE = AD (giả thiết)
BE = CD (chứng minh trên)
⇒ ΔABE = ΔACD (c.c.c)
⇒ \(\widehat {EAB} = \widehat {DAC}\) (2 góc tương ứng)
b) Ta có M là trung điểm cạnh BC ⇒ AM = CM
Và BD = EC (giả thiết)
Ta có: DM = BM − BD
EM = CM − CE
⇒ DM = EM (vì cùng bằng hiệu của các cạnh bằng nhau)
Xét ΔADM và ΔAEM ta có:
AM chung
AD = AE (giả thiết)
DM = EM (chứng minh trên)
⇒ ΔADM = ΔAEM (c.c.c)
⇒ \[\widehat {DAM} = \widehat {EAM}\] (2 góc tương ứng)
⇒ AM chia \(\widehat {DAE}\) thành 2 góc bằng nhau (\(\widehat {DAM} = \widehat {EAM}\))
⇒ AM là phân giác \(\widehat {DAE}\)(đpcm)
c) ΔADM = ΔAEM
⇒ \(\widehat {ADM} = \widehat {AEM}\) (hai góc tương ứng)
Hay \(\widehat {ADE} = \widehat {AED}\)
Áp dụng tính chất tổng 3 góc trong ΔADE ta có:
\(\widehat {DAE} + \widehat {ADE} + \widehat {AED} = 180^\circ \)
⇒ \(60 + 2\widehat {ADE} = 180^\circ \)
⇒ \(\widehat {ADE} = 60^\circ \)
ΔADE có: \(\widehat {DAE} = \widehat {ADE} = \widehat {AED} = 60^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!