Câu hỏi:
12/07/2024 4,205Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD).
a) Chứng minh tam giác AMN vuông cân và AN2 = NC . NP
b) Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD.
c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.
Quảng cáo
Trả lời:
a) Vì ABCD là hình vuông nên AB = BC = CD = DA và \(\widehat {ABC} = \widehat {BC{\rm{D}}} = \widehat {C{\rm{D}}A} = \widehat {DAB} = 90^\circ \)
Ta có:
\(\widehat {MAN} = \widehat {MA{\rm{D}}} + \widehat {DAN} = 90^\circ \)
\(\widehat {BA{\rm{D}}} = \widehat {MA{\rm{D}}} + \widehat {MAB} = 90^\circ \)
Suy ra \(\widehat {DAN} = \widehat {BAM}\)
Xét tam giác ADN và tam giác ABM có
\(\widehat {A{\rm{D}}N} = \widehat {ABM}\left( { = 90^\circ } \right)\)
AD = AB (chứng minh trên)
\(\widehat {DAN} = \widehat {BAM}\) (chứng minh trên)
Suy ra ∆ADN = ∆ABM (g.c.g)
Do đó AM = AN, DN = BM (các cặp cạnh tương ứng)
Suy ra tam giác AMN cân tại A
Khi đó tam giác AMN vuông cân tại A
Xét tam giác AMN cân tại A có AP là đường cao nên AP đồng thời là phân giác
Do đó \(\widehat {NAP} = \widehat {MAP} = \frac{1}{2}\widehat {MAN} = \frac{1}{2}.90^\circ = 45^\circ \)
Vì ABCD là hình vuông có CA là đường chéo nên \(\widehat {AC{\rm{D}}} = \widehat {ACB} = \frac{{90^\circ }}{2} = 45^\circ \)
Xét ∆ACN và ∆PAN có
\(\widehat {NAP} = \widehat {NCA}\left( { = 45^\circ } \right)\)
\(\widehat {ANC}\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{AN}}{{PN}} = \frac{{CN}}{{AN}}\)
Hay AN2 = NC . NP
b) Xét tam giác APN và tam giác APM có
AP là cạnh chung
\(\widehat {PAN} = \widehat {PAM}\) (chứng minh câu a)
AN = AM (chứng minh câu a)
Suy ra ∆APN = ∆APM (c.g.c)
Do đó PM = PN (hai cạnh tương ứng)
Chu vi tam giác MCP là:
CM + MP + CP = CM + PN + CP = CM + PB + DN + CP
= CM + PB + BM + CP = (CM + BM) + (PB + CP) = CD + CB = 2BC
Chu vi hình vuông ABCD là: 4BC
Vậy tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD bằng \(\frac{{2BC}}{{4BC}} = \frac{1}{2}\)
c) Ta có: \[{{\rm{S}}_{ANQ}} = \frac{1}{2}AN.AQ = \frac{1}{2}A{\rm{D}}.NQ\]
Suy ra \(\frac{1}{{A{\rm{D}}}} = \frac{{NQ}}{{AN.AQ}}\)
Do đó \(\frac{1}{{A{{\rm{D}}^2}}} = \frac{{N{Q^2}}}{{A{N^2}.A{Q^2}}}\)
Vì tam giác ANQ vuông tại A nên AN2 + AQ2 = NQ2
Suy ra \(\frac{1}{{A{{\rm{D}}^2}}} = \frac{{A{N^2} + A{Q^2}}}{{A{N^2}.A{Q^2}}} = \frac{1}{{A{N^2}}} + \frac{1}{{A{Q^2}}}\)
Vì AD là cạnh hình vuông nên AD không đổi
Suy ra tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC
Vậy tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có:
1 + 1 = 3 ⟺ 2 = 3
Giả sử ta có đẳng thức:
14 + 6 – 20 = 21 + 9 – 30
Đặt thừa số chung ta có
2 × (7 + 3 – 10) = 3 × (7 + 3 – 10)
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau
Do đó 2 = 3
Phản biện:
+) Sự thật 2 không thể bằng 3. Bài toán này sai trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.
+) Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a × 0 = b × 0 với bất kì giá trị nào của a và b.
Ta có: 1 + 1 = 2 + 1
Mà (1 + 1) × 0 = (2 + 1 ) × 0
Vậy 1 + 1 = 3.
Lời giải
Đáp án đúng là: C
Hàm số \(y = {\left( {2 + \sqrt x } \right)^\pi }\) có tập xác định là
D = [0; +∞)
Hàm số \(y = {\left( {2 + \frac{1}{{{x^2}}}} \right)^\pi }\) có tập xác định là
D = R \ {0}
Hàm số \(y = {\left( {2 + {x^2}} \right)^\pi }\) có tập xác định là
D = R
Hàm số \(y = {\left( {2 + x} \right)^\pi }\) có tập xác định là
D = (–2; +∞)
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận