Câu hỏi:

12/07/2024 2,689

Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MP và MQ với đường tròn (P, Q là tiếp điểm) và 1 cát tuyến MAB (A nằm giữa M và B). Gọi I là trung điểm của AB.

a) Chứng minh 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.

b) PQ cắt AB tại E. Chứng minh MP2 = ME . MI.

c) Qua A kẻ đường thẳng song song MP cắt PQ, PB lần lượt tại H và K. Chứng minh KB = 2HI.

Sách mới 2k7: 30 đề đánh giá năng lực ĐHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Đề ĐGNL Hà Nội Đề ĐGNL Tp.Hồ Chí Minh Đề ĐGTD Bách Khoa HN

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MP và MQ với đường tròn  (ảnh 1)

a) Vì MP, MQ là tiếp tuyến của (O) nên \(\widehat {MPO} = \widehat {MQO} = 90^\circ \)

Xét tứ giác MPOQ có \(\widehat {MPO} + \widehat {MQO} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác MPOQ nội tiếp                      (1)

Xét (O) có AB là dây cung, I là trung điểm của AB nên OI AB

Xét tứ giác MPOI có \(\widehat {MPO} + \widehat {MIO} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác MPOI nội tiếp                        (2)

Từ (1) và (2) suy ra 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.

b) Vì 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn nên tứ giác IPMQ nội tiếp

Suy ra \(\widehat {PIM} = \widehat {PQM} = \widehat {MPQ}\)

Xét ∆PEM và ∆IPM có

\(\widehat {EPM} = \widehat {MIP}\) (chứng minh trên)

\(\widehat {PME}\) là góc chung

Suy ra (g.g)

Do đó \(\frac{{ME}}{{PM}} = \frac{{PM}}{{IM}}\)

Suy ra MP2 = ME . MI

c) Vì tứ giác IPMQ nội tiếp nên \(\widehat {IQH} = \widehat {IMP}\) (cùng chắn cung IP)

Vì AK // MP nên \(\widehat {IAH} = \widehat {IMP}\) (hai góc đồng vị)

Suy ra \(\widehat {IQH} = \widehat {IAH}\)

Do đó tứ giác AHIQ nội tiếp

Suy ra \(\widehat {AIH} = \widehat {AQH} = \widehat {QPA}\) (cùng chắn cung AI)

\(\widehat {AQP} = \widehat {ABP}\) (cùng chắn cung AP)

Do đó \(\widehat {AIH} = \widehat {ABP}\), mà hai góc này ở vị trí đồng vị

Suy ra IH // BP

Xét tam giác ABK có IH // BP và \(IA = IB = \frac{1}{2}AB\)

Suy ra IH là đường trung bình

Do đó KB = 2IH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hãy chứng minh 1 + 1 = 3.

Xem đáp án » 12/07/2024 18,713

Câu 2:

Trong các hàm số sau đây, hàm số nào có tập xác định D = R ?

Xem đáp án » 16/08/2023 6,214

Câu 3:

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục trung?

Xem đáp án » 16/08/2023 4,104

Câu 4:

Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD).

a) Chứng minh tam giác AMN vuông cân và AN2 = NC . NP

b) Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD.

c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.

Xem đáp án » 12/07/2024 3,336

Câu 5:

Trong số 50 học sinh của lớp 10A có 15 bạn đucợ xếp loại học lực giỏi, 25 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa được học sinh giỏi vừa được hạnh kiểm tốt. Khi đó lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạnd dó phải có học lực giỏi hay hạnh kiểm tốt.

Xem đáp án » 16/08/2023 3,316

Câu 6:

Phân tích đa thức thành nhân tử: x2 + 2xy + y2 – x – y – 12.

Xem đáp án » 12/07/2024 2,104

Bình luận


Bình luận