Câu hỏi:
12/07/2024 3,542Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MP và MQ với đường tròn (P, Q là tiếp điểm) và 1 cát tuyến MAB (A nằm giữa M và B). Gọi I là trung điểm của AB.
a) Chứng minh 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.
b) PQ cắt AB tại E. Chứng minh MP2 = ME . MI.
c) Qua A kẻ đường thẳng song song MP cắt PQ, PB lần lượt tại H và K. Chứng minh KB = 2HI.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Vì MP, MQ là tiếp tuyến của (O) nên \(\widehat {MPO} = \widehat {MQO} = 90^\circ \)
Xét tứ giác MPOQ có \(\widehat {MPO} + \widehat {MQO} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác MPOQ nội tiếp (1)
Xét (O) có AB là dây cung, I là trung điểm của AB nên OI ⊥ AB
Xét tứ giác MPOI có \(\widehat {MPO} + \widehat {MIO} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác MPOI nội tiếp (2)
Từ (1) và (2) suy ra 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.
b) Vì 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn nên tứ giác IPMQ nội tiếp
Suy ra \(\widehat {PIM} = \widehat {PQM} = \widehat {MPQ}\)
Xét ∆PEM và ∆IPM có
\(\widehat {EPM} = \widehat {MIP}\) (chứng minh trên)
\(\widehat {PME}\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{ME}}{{PM}} = \frac{{PM}}{{IM}}\)
Suy ra MP2 = ME . MI
c) Vì tứ giác IPMQ nội tiếp nên \(\widehat {IQH} = \widehat {IMP}\) (cùng chắn cung IP)
Vì AK // MP nên \(\widehat {IAH} = \widehat {IMP}\) (hai góc đồng vị)
Suy ra \(\widehat {IQH} = \widehat {IAH}\)
Do đó tứ giác AHIQ nội tiếp
Suy ra \(\widehat {AIH} = \widehat {AQH} = \widehat {QPA}\) (cùng chắn cung AI)
Mà \(\widehat {AQP} = \widehat {ABP}\) (cùng chắn cung AP)
Do đó \(\widehat {AIH} = \widehat {ABP}\), mà hai góc này ở vị trí đồng vị
Suy ra IH // BP
Xét tam giác ABK có IH // BP và \(IA = IB = \frac{1}{2}AB\)
Suy ra IH là đường trung bình
Do đó KB = 2IH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục trung?
Câu 4:
Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD).
a) Chứng minh tam giác AMN vuông cân và AN2 = NC . NP
b) Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD.
c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.
Câu 5:
Trong số 50 học sinh của lớp 10A có 15 bạn đucợ xếp loại học lực giỏi, 25 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa được học sinh giỏi vừa được hạnh kiểm tốt. Khi đó lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạnd dó phải có học lực giỏi hay hạnh kiểm tốt.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận