Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
1 + 1 = 3 ⟺ 2 = 3
Giả sử ta có đẳng thức:
14 + 6 – 20 = 21 + 9 – 30
Đặt thừa số chung ta có
2 × (7 + 3 – 10) = 3 × (7 + 3 – 10)
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau
Do đó 2 = 3
Phản biện:
+) Sự thật 2 không thể bằng 3. Bài toán này sai trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.
+) Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a × 0 = b × 0 với bất kì giá trị nào của a và b.
Ta có: 1 + 1 = 2 + 1
Mà (1 + 1) × 0 = (2 + 1 ) × 0
Vậy 1 + 1 = 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục trung?
Câu 3:
Trong số 50 học sinh của lớp 10A có 15 bạn đucợ xếp loại học lực giỏi, 25 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa được học sinh giỏi vừa được hạnh kiểm tốt. Khi đó lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạnd dó phải có học lực giỏi hay hạnh kiểm tốt.
Câu 4:
Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD).
a) Chứng minh tam giác AMN vuông cân và AN2 = NC . NP
b) Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD.
c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.
Câu 5:
Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MP và MQ với đường tròn (P, Q là tiếp điểm) và 1 cát tuyến MAB (A nằm giữa M và B). Gọi I là trung điểm của AB.
a) Chứng minh 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.
b) PQ cắt AB tại E. Chứng minh MP2 = ME . MI.
c) Qua A kẻ đường thẳng song song MP cắt PQ, PB lần lượt tại H và K. Chứng minh KB = 2HI.
Câu 6:
Chứng minh rằng trong tam giác ABC, ta có:
tanA + tanB + tanC = tanA.tanB.tanC \(\left( {\widehat A,\widehat B,\widehat C \ne \frac{\pi }{2}} \right)\).
về câu hỏi!