Câu hỏi:

12/07/2024 6,043

Hãy chứng minh 1 + 1 = 3.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

1 + 1 = 3 2 = 3

Giả sử ta có đẳng thức:

14 + 6 – 20 = 21 + 9 – 30

Đặt thừa số chung ta có

2 × (7 + 3 – 10) = 3 × (7 + 3 – 10)

Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau

Do đó 2 = 3

Phản biện:

+) Sự thật 2 không thể bằng 3. Bài toán này sai trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.

+) Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a × 0 = b × 0 với bất kì giá trị nào của a và b.

Ta có: 1 + 1 = 2 + 1

Mà (1 + 1) × 0 = (2 + 1 ) × 0

Vậy 1 + 1 = 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong các hàm số sau đây, hàm số nào có tập xác định D = R ?

Xem đáp án » 16/08/2023 5,027

Câu 2:

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục trung?

Xem đáp án » 16/08/2023 3,655

Câu 3:

Trong số 50 học sinh của lớp 10A có 15 bạn đucợ xếp loại học lực giỏi, 25 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa được học sinh giỏi vừa được hạnh kiểm tốt. Khi đó lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạnd dó phải có học lực giỏi hay hạnh kiểm tốt.

Xem đáp án » 16/08/2023 2,963

Câu 4:

Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD).

a) Chứng minh tam giác AMN vuông cân và AN2 = NC . NP

b) Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD.

c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.

Xem đáp án » 12/07/2024 2,571

Câu 5:

Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MP và MQ với đường tròn (P, Q là tiếp điểm) và 1 cát tuyến MAB (A nằm giữa M và B). Gọi I là trung điểm của AB.

a) Chứng minh 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.

b) PQ cắt AB tại E. Chứng minh MP2 = ME . MI.

c) Qua A kẻ đường thẳng song song MP cắt PQ, PB lần lượt tại H và K. Chứng minh KB = 2HI.

Xem đáp án » 12/07/2024 1,926

Câu 6:

Chứng minh rằng trong tam giác ABC, ta có:

tanA + tanB + tanC = tanA.tanB.tanC \(\left( {\widehat A,\widehat B,\widehat C \ne \frac{\pi }{2}} \right)\).

Xem đáp án » 12/07/2024 1,862

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store