Quảng cáo
Trả lời:
Đáp án đúng là: C
Hàm số \(y = {\left( {2 + \sqrt x } \right)^\pi }\) có tập xác định là
D = [0; +∞)
Hàm số \(y = {\left( {2 + \frac{1}{{{x^2}}}} \right)^\pi }\) có tập xác định là
D = R \ {0}
Hàm số \(y = {\left( {2 + {x^2}} \right)^\pi }\) có tập xác định là
D = R
Hàm số \(y = {\left( {2 + x} \right)^\pi }\) có tập xác định là
D = (–2; +∞)
Vậy ta chọn đáp án C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có:
1 + 1 = 3 ⟺ 2 = 3
Giả sử ta có đẳng thức:
14 + 6 – 20 = 21 + 9 – 30
Đặt thừa số chung ta có
2 × (7 + 3 – 10) = 3 × (7 + 3 – 10)
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau
Do đó 2 = 3
Phản biện:
+) Sự thật 2 không thể bằng 3. Bài toán này sai trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.
+) Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a × 0 = b × 0 với bất kì giá trị nào của a và b.
Ta có: 1 + 1 = 2 + 1
Mà (1 + 1) × 0 = (2 + 1 ) × 0
Vậy 1 + 1 = 3.
Lời giải

a) Vì MP, MQ là tiếp tuyến của (O) nên \(\widehat {MPO} = \widehat {MQO} = 90^\circ \)
Xét tứ giác MPOQ có \(\widehat {MPO} + \widehat {MQO} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác MPOQ nội tiếp (1)
Xét (O) có AB là dây cung, I là trung điểm của AB nên OI ⊥ AB
Xét tứ giác MPOI có \(\widehat {MPO} + \widehat {MIO} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác MPOI nội tiếp (2)
Từ (1) và (2) suy ra 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.
b) Vì 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn nên tứ giác IPMQ nội tiếp
Suy ra \(\widehat {PIM} = \widehat {PQM} = \widehat {MPQ}\)
Xét ∆PEM và ∆IPM có
\(\widehat {EPM} = \widehat {MIP}\) (chứng minh trên)
\(\widehat {PME}\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{ME}}{{PM}} = \frac{{PM}}{{IM}}\)
Suy ra MP2 = ME . MI
c) Vì tứ giác IPMQ nội tiếp nên \(\widehat {IQH} = \widehat {IMP}\) (cùng chắn cung IP)
Vì AK // MP nên \(\widehat {IAH} = \widehat {IMP}\) (hai góc đồng vị)
Suy ra \(\widehat {IQH} = \widehat {IAH}\)
Do đó tứ giác AHIQ nội tiếp
Suy ra \(\widehat {AIH} = \widehat {AQH} = \widehat {QPA}\) (cùng chắn cung AI)
Mà \(\widehat {AQP} = \widehat {ABP}\) (cùng chắn cung AP)
Do đó \(\widehat {AIH} = \widehat {ABP}\), mà hai góc này ở vị trí đồng vị
Suy ra IH // BP
Xét tam giác ABK có IH // BP và \(IA = IB = \frac{1}{2}AB\)
Suy ra IH là đường trung bình
Do đó KB = 2IH.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.