Câu hỏi:

16/08/2023 4,419

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục trung?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Hàm số lẻ thì đồ thị hàm số đối xứng nhau qua gốc tọa độ. Hàm số chẵn thì đồ thị hàm số nhận trục tung làm trục đối xứng

+) Xét hàm số y = sinx . cos2x

Tập xác định D = R

Ta có f(–x) = sin(–x) . cos (–2x) = – sinxcos2x

Suy ra f(–x) = – f(x)

Do đó hàm số này là hàm số lẻ (loại)

+) Xét hàm số \(y = {\sin ^3}x.cos\left( {x - \frac{\pi }{2}} \right) = {\sin ^3}x.{\mathop{\rm s}\nolimits} {\rm{inx}} = {\sin ^4}x\)

Tập xác định D = R

Ta có g(–x) = sin4(–x) = (–sinx)4 = sin4x

Suy ra g(–x) = g(x)

Do đó hàm số này là hàm số chẵn

Vậy ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có:

1 + 1 = 3 2 = 3

Giả sử ta có đẳng thức:

14 + 6 – 20 = 21 + 9 – 30

Đặt thừa số chung ta có

2 × (7 + 3 – 10) = 3 × (7 + 3 – 10)

Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau

Do đó 2 = 3

Phản biện:

+) Sự thật 2 không thể bằng 3. Bài toán này sai trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.

+) Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a × 0 = b × 0 với bất kì giá trị nào của a và b.

Ta có: 1 + 1 = 2 + 1

Mà (1 + 1) × 0 = (2 + 1 ) × 0

Vậy 1 + 1 = 3.

Câu 2

Lời giải

Đáp án đúng là: C

Hàm số \(y = {\left( {2 + \sqrt x } \right)^\pi }\) có tập xác định là

D = [0; +∞)

Hàm số \(y = {\left( {2 + \frac{1}{{{x^2}}}} \right)^\pi }\) có tập xác định là

D = R \ {0}

Hàm số \(y = {\left( {2 + {x^2}} \right)^\pi }\) có tập xác định là

D = R

Hàm số \(y = {\left( {2 + x} \right)^\pi }\) có tập xác định là

D = (–2; +∞)

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP