Câu hỏi:
12/07/2024 4,895Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
ĐKXĐ: \(\left\{ \begin{array}{l}m{x^2} \ge 4\\x \ne 1\end{array} \right. \Rightarrow m > 0\)
Ta có:
• \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}} = \sqrt m \)
• \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}} = - \sqrt m \)
Suy ra đồ thị hàm số có 2 đường tiệm cận ngang \(y = \pm \sqrt m ,\,\;\left( {m > 0} \right)\)
Để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có 3 đường tiệm cận thì đồ thị hàm số phải có 1 đường tiệm cận đứng.
Suy ra x = 1 phải thỏa mãn điều kiện mx2 ≥ 4 Û m ≥ 4.
Do đó, m ≥ 4 thì hàm số đã cho có 1 đường tiệm cận đứng và 2 đường tiệm cận ngang.
Mặt khác, m Î [−10; 10], m Î ℤ nên m Î {4; 5; 6; 7; 8; 9; 10}.
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).
Câu 2:
Giải phương trình: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\).
Câu 4:
Tìm tất cả các giá trị của m để hàm số y = (m − 1)x3 − 3(m − 1)x2 + 3x + 2 đồng biến biến trên ℝ.
Câu 5:
Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.
Câu 6:
Cho hàm số f (x) = ax4 + bx2 + c (a, b, c Î ℝ). Đồ thị của hàm số y = f (x) như hình vẽ bên. Số nghiệm thực của phương trình 4f (x) − 3 = 0 là:
về câu hỏi!