Câu hỏi:

12/07/2024 5,697

Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [−10; 10] để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có ba đường tiệm cận?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐKXĐ: \(\left\{ \begin{array}{l}m{x^2} \ge 4\\x \ne 1\end{array} \right. \Rightarrow m > 0\)

Ta có:

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}} = \sqrt m \)

\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}} = - \sqrt m \)

Suy ra đồ thị hàm số có 2 đường tiệm cận ngang \(y = \pm \sqrt m ,\,\;\left( {m > 0} \right)\)

Để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có 3 đường tiệm cận thì đồ thị hàm số phải có 1 đường tiệm cận đứng.

Suy ra x = 1 phải thỏa mãn điều kiện mx2 ≥ 4 Û m ≥ 4.

Do đó, m ≥ 4 thì hàm số đã cho có 1 đường tiệm cận đứng và 2 đường tiệm cận ngang.

Mặt khác, m Î [−10; 10], m Î ℤ nên m Î {4; 5; 6; 7; 8; 9; 10}.

Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 1)

Xem đáp án » 12/07/2024 7,960

Câu 2:

Giải phương trình: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\).

Xem đáp án » 12/07/2024 4,986

Câu 3:

Tìm GTLN, GTNN của hàm số: y = sin2 x + cosx + 2

Xem đáp án » 12/07/2024 4,909

Câu 4:

Tìm tất cả các giá trị của m để hàm số y = (m − 1)x3 − 3(m − 1)x2 + 3x + 2 đồng biến biến trên ℝ.

Xem đáp án » 12/07/2024 3,943

Câu 5:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem đáp án » 12/07/2024 3,265

Câu 6:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem đáp án » 12/07/2024 2,748

Bình luận


Bình luận