Câu hỏi:
18/08/2023 439Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và \(\widehat {ABC} = 120^\circ \). Các cạnh AA', A'B, A'D cùng tạo với đáy một góc 60°. Tính theo a thể tích V của khối lăng trụ đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \(\widehat {ABC} = 120^\circ \Rightarrow \widehat {BAD} = 60^\circ \) suy ra tam giác ABD là tam giác đều cạnh a.
Khi đó A’.ABD là chóp đều cạnh đáy bằng a.
Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tam tam giác ABD.
Ta có: \(A'H = HA.\tan 60^\circ = \frac{{a\sqrt 3 }}{3}.\sqrt 3 = a\)
\( \Rightarrow {V_{A'.ABD}} = \frac{1}{3}A'H.{S_{ABC}} = \frac{{{a^3}\sqrt 3 }}{{12}}\)
Do đó \({V_{ABCD.A'B'C'D'}} = 3.{V_{A'.ABCD}} = 6.{V_{A'.ABD}} = \frac{{{a^3}\sqrt 3 }}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
Câu 2:
Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng
Câu 5:
Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
Câu 7:
về câu hỏi!