Phương trình \(2{\sin ^2}x + \sqrt 3 \sin 2x = 3\) có nghiệm là
Phương trình \(2{\sin ^2}x + \sqrt 3 \sin 2x = 3\) có nghiệm là
A. \(x = \frac{\pi }{3} + k\pi \), k ∈ ℤ;
B. \(x = \frac{{2\pi }}{3} + k\pi \), k ∈ ℤ;
C. \(x = \frac{{4\pi }}{3} + k\pi \), k ∈ ℤ;
D. \(x = \frac{{5\pi }}{3} + k\pi \), k ∈ ℤ.
Quảng cáo
Trả lời:

Đáp án đúng là: A
Ta có: \(2{\sin ^2}x + \sqrt 3 \sin 2x = 3\)
\( \Leftrightarrow 2{\sin ^2}x - 1 + \sqrt 3 \sin 2x = 2\)
\( \Leftrightarrow - \left( {1 - 2{{\sin }^2}x} \right) + \sqrt 3 \sin 2x = 2\)
\( \Leftrightarrow - \cos 2x + \sqrt 3 \sin 2x = 2\)
\( \Leftrightarrow \sqrt 3 \sin 2x - \cos 2x = 2\)
\( \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 2x - \frac{1}{2}\cos 2x = 1\)
\( \Leftrightarrow \cos \frac{\pi }{6}.\sin 2x - \sin \frac{\pi }{6}.\cos 2x = 1\)
\( \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = 1\)
\( \Leftrightarrow 2x - \frac{\pi }{6} = \frac{\pi }{2} + k2\pi \), k ∈ ℤ
\( \Leftrightarrow x = \frac{\pi }{3} + k\pi \), k ∈ ℤ.
Vậy phương trình có họ nghiệm là: \(x = \frac{\pi }{3} + k\pi \), k ∈ ℤ.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\frac{{a\sqrt 3 }}{4}\);
B. \(\frac{{a\sqrt 2 }}{4}\);
C. \(\frac{{a\sqrt 5 }}{4}\);
D. \(\frac{{a\sqrt 3 }}{3}\).
Lời giải
Đáp án đúng là: A

Gọi H là trung điểm của BC. Khi đó SH ⊥ (ABCD).
Do tam giác ABC vuông cân tại A nên AH ⊥ BC và \(AH = \frac{a}{2}\).
Dựng điểm D sao cho ABCD là hình bình hành.
Khi đó d(SA, BC) = d(BC, (SAD)) = d(H, (SAD)).
Kẻ HI ⊥ SA.
Khi đó d(H, (SAD)) = HI \( = \frac{{\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}}{a} = \frac{{a\sqrt 3 }}{4}\).
Câu 2
A. −259;
B. 68;
C. 0;
D. −4.
Lời giải
Đáp án đúng là: D
TXĐ: D = ℝ
Hàm số liên tục trên đoạn [0; 4]
Ta có: y¢ = 3x2 + 4x – 7 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \in [0;4]\\x = - \frac{7}{3} \notin [0;4]\end{array} \right.\)
Khi đó y(0) = 0; y(1) = −4; y(4) = 68
Vậy giá trị nhỏ nhất cần tìm là: −4.
Câu 3
A. \[{\log _5}\left( {\frac{{1 - \sqrt {21} }}{2}} \right)\];
B. \({\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\);
C. 5;
D. \(5\log \left( {\frac{{1 + \sqrt {21} }}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left[ \begin{array}{l}x = 3\\x = - {\log _5}2\end{array} \right.\);
B. \(\left[ \begin{array}{l}x = 3\\x = {\log _5}2\end{array} \right.\);
C. \(\left[ \begin{array}{l}x = 1\\x = - {\log _5}2\end{array} \right.\);
D. \(\left[ \begin{array}{l}x = 1\\x = {\log _5}2\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.