Câu hỏi:

18/08/2023 454

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 2f(x2 – 1) – 5 = 0 là:

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

2f(x2 – 1) – 5 = 0

Đặt t = x2 – 1 (t ≥ −1)

Phương trình (1) trở thành

2f(t) – 5 = 0

\( \Leftrightarrow \left( t \right) = \frac{5}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}t = a(a < - 3)\\t = b\left( {b \in \left\{ { - 2; - 1} \right\}} \right)\\t = c\left( {c \in \left\{ { - 1;0} \right\}} \right)\end{array} \right.\)

Ta có t = c (thỏa mãn)

c = x2 – 1 \( \Leftrightarrow x = \pm \sqrt {c + 1} \)

Vậy số nghiệm thực của phương trình (1) là 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) (ảnh 1)

Gọi H là trung điểm của BC. Khi đó SH (ABCD).

Do tam giác ABC vuông cân tại A nên AH BC và \(AH = \frac{a}{2}\).

Dựng điểm D sao cho ABCD là hình bình hành.

Khi đó d(SA, BC) = d(BC, (SAD)) = d(H, (SAD)).

Kẻ HI SA.

Khi đó d(H, (SAD)) = HI \( = \frac{{\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}}{a} = \frac{{a\sqrt 3 }}{4}\).

Lời giải

Đáp án đúng là: D

TXĐ: D = ℝ

Hàm số liên tục trên đoạn [0; 4]

Ta có: y¢ = 3x2 + 4x – 7 = 0

\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \in [0;4]\\x = - \frac{7}{3} \notin [0;4]\end{array} \right.\)

Khi đó y(0) = 0; y(1) = −4; y(4) = 68

Vậy giá trị nhỏ nhất cần tìm là: −4.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP