Câu hỏi:
18/08/2023 436Giải bất phương trình sau: \({\log _{\frac{1}{2}}}\left( {{4^x} + 4} \right) \ge {\log _{\frac{1}{2}}}\left( {{2^{2x + 1}} - {{3.2}^x}} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\({\log _{\frac{1}{2}}}\left( {{4^x} + 4} \right) \ge {\log _{\frac{1}{2}}}\left( {{2^{2x + 1}} - {{3.2}^x}} \right)\)
⇔ 4x – 3.2x – 4 ≥ 0
\( \Leftrightarrow \left[ \begin{array}{l}{2^x} \le - 1\\{2^x} \ge 4\end{array} \right.\)
⇔ 2x ≥ 4
⇔ x ≥ 2.
Vậy bất phương trình đã cho có tập nghiệm là [2; +∞)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
Câu 2:
Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng
Câu 5:
Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
Câu 7:
về câu hỏi!