Câu hỏi:
18/08/2023 2,560
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 \); BC = 2a. Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60°. Khoảng cách từ D đến (SBC) tính theo a bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 \); BC = 2a. Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60°. Khoảng cách từ D đến (SBC) tính theo a bằng
Quảng cáo
Trả lời:
Đáp án đúng là: C

Ta có SB tạo với mp (ABCD) là: \(\widehat {SBM} = 60^\circ \)
\(BM = \frac{3}{4}BD = 3a\)
\(SM = BM.\tan 60^\circ = 3\sqrt 3 a\)
\(d\left( {D,\left( {SBC} \right)} \right) = \frac{4}{3}d\left( {M,\left( {SBC} \right)} \right) = \frac{4}{3}MH\)
Xét ∆SMK vuông tại M có:
\(\frac{1}{{M{H^2}}} = \frac{1}{{M{K^2}}} + \frac{1}{{M{S^2}}}\)
\( = \frac{1}{{{{\left( {\frac{3}{4}.2\sqrt 3 a} \right)}^2}}} + \frac{1}{{{{\left( {3\sqrt 3 a} \right)}^2}}} = \frac{5}{{27{a^2}}}\)
\( \Rightarrow MH = \sqrt {\frac{{27}}{5}} a\)
Vậy \(d\left( {D,\left( {SBC} \right)} \right) = \frac{3}{4}MH = \frac{{4\sqrt {15} a}}{5}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A

Gọi H là trung điểm của BC. Khi đó SH ⊥ (ABCD).
Do tam giác ABC vuông cân tại A nên AH ⊥ BC và \(AH = \frac{a}{2}\).
Dựng điểm D sao cho ABCD là hình bình hành.
Khi đó d(SA, BC) = d(BC, (SAD)) = d(H, (SAD)).
Kẻ HI ⊥ SA.
Khi đó d(H, (SAD)) = HI \( = \frac{{\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}}{a} = \frac{{a\sqrt 3 }}{4}\).
Lời giải
Đáp án đúng là: D
TXĐ: D = ℝ
Hàm số liên tục trên đoạn [0; 4]
Ta có: y¢ = 3x2 + 4x – 7 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \in [0;4]\\x = - \frac{7}{3} \notin [0;4]\end{array} \right.\)
Khi đó y(0) = 0; y(1) = −4; y(4) = 68
Vậy giá trị nhỏ nhất cần tìm là: −4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.