Câu hỏi:

18/08/2023 86

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 ta lập được bao nhiêu số tự nhiên gồm 10 chữ số đôi một khác nhau?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét số tự nhiên có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}{a_9}{a_{10}}} \).

TH1: a1 có thể bằng 0 hoặc khác 0.

Với a1 có thể bằng 0 hoặc khác 0, mỗi số có dạng trên là một hoán vị của 10 chữ số đã cho.

Do đó, số các số có thể lập được trong trường hợp 1 là:

P10 = 10! (số).

Trường hợp 2: a1 = 0.

Vì a1 = 0 cố định nên 9 chữ số sau a1 đều khác 0 và chỉ có 9 chữ số đó thay đổi.

Suy ra, mỗi số có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}{a_9}{a_{10}}} \) là một hoán vị của 9 chữ số khác 0 đã cho.

Do đó, số các số có thể lập được trong trường hợp 2 là:

P9 = 9! (số).

Vậy số các số tự nhiên có 10 chữ số đôi một khác nhau có thể lập được là:

10! – 9! = 3 265 920 (số).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng

Xem đáp án » 18/08/2023 7,895

Câu 2:

Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng

Xem đáp án » 18/08/2023 5,748

Câu 3:

Tổng các nghiệm của phương trình 4x – 3.2x+2 + 32 = 0 bằng

Xem đáp án » 18/08/2023 3,099

Câu 4:

Phương trình 5x + 251-x = 6 có tích các nghiệm là:

Xem đáp án » 18/08/2023 2,672

Câu 5:

Chứng minh rằng với mọi số nguyên dương n ta luôn có n3 + 5n chia hết cho 6.

Xem đáp án » 12/07/2024 1,804

Câu 6:

Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\)

Xem đáp án » 18/08/2023 1,756

Câu 7:

Tập nghiệm của bất phương trình ln(1 – x) < 0:

Xem đáp án » 18/08/2023 1,609

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store