Câu hỏi:
18/08/2023 296Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc \(\widehat {BAD} = 60^\circ \); \(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\). Gọi a là góc giữa hai mặt phẳng (SBD) và (ABCD). Mệnh đề nào sau đây đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Từ giả thiết suay ra tam giác ABD đều cạnh a.
Gọi H là hình chiếu của S trên mặt phẳng (ABCD).
Do SA = SB = SC nên suy ra H cách đều các đỉnh của tam giác ABD hay H là tâm của tam giác đều ABD.
Suy ra \(HI = \frac{1}{3}AI = \frac{{a\sqrt 3 }}{6}\) và \(SH = \sqrt {S{A^2} - A{H^2}} = \frac{{a\sqrt {15} }}{6}\)
Vì ABCD là hình thoi nên HI ⊥ BD
Tam giác SBD cân tại S nên SI ⊥ BD
Do đó \(\widehat {\left( {\left( {SBD} \right),\,\,\left( {ABCD} \right)} \right)} = \widehat {\left( {SI,\,\,AI} \right)} = \widehat {SIH}\)
Trong tam giác vuông SHI, có \(\tan \widehat {SIH} = \frac{{SH}}{{HI}} = \sqrt 5 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
Câu 2:
Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng
Câu 5:
Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
Câu 7:
về câu hỏi!