Câu hỏi:
18/08/2023 256Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, CC’ = c. Độ dài đường chéo AC’ là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: C’B ⊥ (ABB’A’) nên suy ra ∆AB’C’ vuông tại B’.
(AB’)2 = a2 + c2
Khi đó ta có: \(AC' = \sqrt {{{(AB')}^2} + {{(B'C')}^2}} \)
\( = \sqrt {{a^2} + {c^2} + {b^2}} \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
Câu 2:
Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng
Câu 5:
Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
Câu 7:
về câu hỏi!