Câu hỏi:

18/08/2023 143

Xếp ngẫu nhiên 10 học sinh gồm 5 nam và 5 nữ thành một hàng dọc. Xác suất để không có bất kì hai học sinh cùng giới nào đứng cạnh nhau bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

• 5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5! . 5! = 1202

• 5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5! . 5! = 1202

Theo quy tắc cộng ta có: 1202 + 1202 = 2 . 1202 cách sắp xếp thỏa mãn.

Vậy xác suất cần tính: \(\frac{{2{{(5!)}^2}}}{{10!}} = \frac{1}{{126}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng

Xem đáp án » 18/08/2023 7,377

Câu 2:

Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng

Xem đáp án » 18/08/2023 5,261

Câu 3:

Tổng các nghiệm của phương trình 4x – 3.2x+2 + 32 = 0 bằng

Xem đáp án » 18/08/2023 2,993

Câu 4:

Phương trình 5x + 251-x = 6 có tích các nghiệm là:

Xem đáp án » 18/08/2023 2,583

Câu 5:

Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\)

Xem đáp án » 18/08/2023 1,660

Câu 6:

Tập nghiệm của bất phương trình ln(1 – x) < 0:

Xem đáp án » 18/08/2023 1,470

Câu 7:

Chứng minh rằng với mọi số nguyên dương n ta luôn có n3 + 5n chia hết cho 6.

Xem đáp án » 12/07/2024 1,422

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store