Câu hỏi:

18/08/2023 283

Tìm giá trị n ℕ thỏa mãn \(C_{n + 1}^1 + 3C_{n + 2}^2 = C_{n + 1}^3\).

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện: n ≥ 2 và n

Ta có: \(C_{n + 1}^1 + 3C_{n + 2}^2 = C_{n + 1}^3\)

\(\frac{{\left( {n + 1} \right)!}}{{1!.n!}} + 3\frac{{\left( {n + 2} \right)!}}{{2!.n!}} = \frac{{\left( {n + 3} \right)!}}{{3!.\left( {n - 2} \right)!}}\)

\(n + 1 + 3.\frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2} = \frac{{\left( {n - 1} \right)n\left( {n + 1} \right)}}{6}\)

Vì n + 1 > 0 nên chia cả 2 vế cho n + 1 ta có:

1 + \(3.\frac{{\left( {n + 2} \right)}}{2} = \frac{{\left( {n - 1} \right)n}}{6}\)

6 + 3.3(n+2) = (n – 1)n

n2 – 10n – 24 = 0

\(\left[ \begin{array}{l}n = - 2\left( L \right)\\n = 12\end{array} \right.\)

Vậy n = 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC vuông tại A. Kẻ BD là tia phân giác của \(\widehat {ABC}\)(D AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) Chứng minh ΔABD = ΔEBD.

b) Chứng minh: DE = AD và DE vuông góc với BC.

c) Chứng minh: BD là đường trung trực của đoạn AE.

d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.

Xem đáp án » 18/08/2023 59,237

Câu 2:

Phép cộng, trừ 2 số cùng số mũ.

Xem đáp án » 18/08/2023 21,446

Câu 3:

Một cửa hàng nhập về 50 chiếc túi xách với giá góc 150 000 đồng/cái. Cửa hàng đã bán 30 chiếc với giá mỗi chiếc lãi 30% so với giá gốc, 20 chiếc còn lại bán lỗ 5% so với giá gốc. Hỏi sau khi bán hết 50 chiếc túi xách cửa hàng đó lãi hay lỗ bao nhiêu tiền?

Xem đáp án » 18/08/2023 12,671

Câu 4:

Tích các nghiệm của phương trình: logx(125x) . log252x = 1?

Xem đáp án » 12/07/2024 10,401

Câu 5:

Trên cùng phía của đường thẳng xy, vẽ 2 đường thằng AH và BK, sao cho AH vuông góc với xy ở H, BK vuông góc với xy ở K và BK = AH. Gọi O là trung điểm của đoạn HK. Chứng minh: \(\widehat {AOH} = \widehat {BOK}\).

Xem đáp án » 18/08/2023 9,476

Câu 6:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

Xem đáp án » 18/08/2023 9,030

Câu 7:

Cho tam giác ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác góc A?

Xem đáp án » 18/08/2023 8,006

Bình luận


Bình luận