Cho một số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 2020, được viết theo thứ tự liền nhau như sau: 1 2 3 4 5 6 7 8 9 10 11 12 13 … 2017 2018 2019 2020 2021. Hãy tính tổng tất cả các chữ số của số đó?
Cho một số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 2020, được viết theo thứ tự liền nhau như sau: 1 2 3 4 5 6 7 8 9 10 11 12 13 … 2017 2018 2019 2020 2021. Hãy tính tổng tất cả các chữ số của số đó?
Quảng cáo
Trả lời:
Bước 1: Tính tổng các chữ số từ 0 đến 999:
Thêm các chữ số 0 vào trước các số có 1 và 2 chữ số để ta được dãy số gồm toàn các số có 3 chữ số: 000; 001; 002; 003; 004; ...; 999 (Tổng các chữ số vẫn không thay đổi)
Khi này, dãy số trên có 1000 số
Số các chữ số là: 1000 × 3 = 3 000 (chữ số)
Mỗi chữ số 0; 1; 2; ...; 9 xuất hiện số lần là: 3000 : 10 = 300 (lần)
Vậy, tổng các chữ số từ 0 đến 999 là:
(0 + 1 + 2 + ... + 9) . 300 = 45 . 300 = 13 500
Bước 2: Tính tổng các chữ số từ 1000 đến 1999:
So với dãy số 000 đến 999 thì mỗi số tăng thêm 1 ở hàng nghìn
Vậy tổng các chữ số từ 1000 đến 1999 là:
13500 + 1 . 1000 = 13500 + 1000 = 14500
Bước 3: Tính tổng các chữ số từ 2000 đến 2021:
Ta có tổng các chữ số từ 2000 đến 2021 là:
(2 . 21 + 1 . 10 + 2 + 2 . 45) + (2 + 0 + 2 + 1)
= (42 + 10 + 2 + 90) + 5
= 144 + 5
= 149
Vậy, tổng tất cả các chữ số từ 1 đến 2021 là 13 500 + 14500 + 149 = 28149.Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ABD và tam giác EBD có:
AB = BE(gt)
\(\widehat {ABD} = \widehat {EBD}\)(do BD là phân giác \(\widehat {ABD}\))
Cạnh BD chung
Suy ra ΔABD = ΔEBD (c−g−c).
b) Theo câu a) ta có ΔABD = ΔEBD(c−g−c)
Nên DE = AD (hai cạnh tương ứng) và \(\widehat {BED} = \widehat {BAD} = 90^\circ \)(hai góc tương ứng)
Do đó: DE ⊥ BC.
c) Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB = BE (gt)
\(\widehat {ABD} = \widehat {EBD}\) (do BD là phân giác \(\widehat {ABD}\))
Cạnh BI chung
Suy ra ΔABI = ΔEBI (c−g−c).
⇒ IA = IE, \(\widehat {BIA} = \widehat {BIE}\)
Mà \(\widehat {BIA} + \widehat {BIE} = 180^\circ \)(hai góc kề bù)
Nên \(\widehat {BIA} = \widehat {BIE} = 90^\circ \)
Hay BI ⊥ AE
Từ đó ta có BD ⊥ AE tại I và I là trung điểm AE.
Suy ra BD là đường trung trực của đoạn AE.
d) Theo câu b) ta có AD = DE
Xét tam giác ADF và tam giác EDC có:
AD = DE(cmt)
\(\widehat {FAD} = \widehat {DEC} = 90^\circ \)
AF = CE(gt)
Suy ra ΔADF = ΔEDC (c−g−c)
⇒ \(\widehat {ADF} = \widehat {CDF}\)
Mà A, D, C thẳng hàng nên suy ra F, D, E thẳng hàng.
Lời giải
Không có công thức về cộng, trừ lũy thừa, ta thực hiện phép tính lũy thừa sau đó thực hiện cộng, trừ thông thường.
Ví dụ: 32 – 22 = 9 – 4 = 5
32 – 22 ≠ (3 – 2)2 = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.