Câu hỏi:

13/07/2024 3,219

Cho đường tròn (O) đường kính AB. Trên tiếp tuyến Ax lấy điểm C(C≠ A). Đoạn thẳng BC cắt (O) tại M. Gọi I là trung điểm của MB, K là trung điểm của AC.

a) Chứng minh AM là đường cao của tam giác ABC và AC2 = CM.CB.

b) Chứng minh A, C, I, O cùng nằm trên 1 đường tròn.

c) Chứng minh KM là tiếp tuyến của đường tròn (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Vì AB là đường kính của (O) AM BM

AM BC

AM là đường cao ΔABC

Ta có AC là tiếp tuyến của (O)

AC AB

ΔABC vuông tại Ado AM BC

AC2 = CM.CB (Hệ thức lượng trong tam giác vuông)

b) Ta có I là trung điểm MB OI MB

⇒ OIC^=OAC^ = 90°

A, O, I, C  đường tròn đường kính CO

c) Ta có O,K là trung điểm AB,AC

OK là đường trung bình ΔABC

OK//BC

OKAM vì AMBC

OK là trung trực của AM

M, A đối xứng qua OK

KMO^=KAO^ = 90°

KM là tiếp tuyến của (O).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cách đổi từ vecto chỉ phương sang vecto pháp tuyến

Xem đáp án » 12/07/2024 57,389

Câu 2:

Để hoàn thành một công việc hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc?

Xem đáp án » 12/07/2024 48,664

Câu 3:

Cách đổi cm3 sang m3.

Xem đáp án » 13/07/2024 46,452

Câu 4:

Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg chất A và 9kg chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và 0,6kg chất B. Từ mỗi tấn nguyên liệu loại II giá triệu đồng có thể chiết xuất được 10kg chất A và 1,5kg chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại

Xem đáp án » 12/07/2024 39,294

Câu 5:

cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC , trên tia đối của tia MB lấy điểm D sao cho MD = MB.              

1) Chứng minh AD = BC.        

2) Chứng minh CD vuông góc với AC.          

3) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh ∆ABM = ∆CNM.

Xem đáp án » 13/07/2024 33,581

Câu 6:

Chứng minh điểm G là trọng tâm của tam giác ABC khi và chỉ khi GA+GB+GC=0 .

Xem đáp án » 13/07/2024 30,686

Câu 7:

Trong một giỏ hoa có 5 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ (các bông hoa coi như đôi một khác nhau). Người ta muốn làm một bó hoa gồm 7 bông được lấy từ giỏ hoa đó. Hỏi có bao nhiêu cách chọn hoa biết bó hoa có đúng 1 bông hồng đỏ?

Xem đáp án » 12/07/2024 30,038
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua