Câu hỏi:
13/07/2024 7,751Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O, R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó.
b) Chứng minh AO vuông góc với BC. Cho biết R = 15 cm, BC = 24cm. Tính AB, OA.
c) Chứng minh BC là tia phân giác của góc ABH
d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. Chứng minh IH = IB.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có AB, AC là tiếp tuyến của (O) ⇒ = 90°
⇒ = 90° + 90° = 180°
⇒ A, B, O, C cùng thuộc đường tròn đường kính (AO).
b) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC (tính chất hai tiếp tuyến cắt nhau)
và có OB = OC nên AO là đường trung trực của BC
⇒AO ⊥ BC
Gọi AO ∩ BC = E
⇒ E là trung điểm BC
⇒ BE =
Do AB ⊥ OB, BE ⊥ AO
Áp dụng hệ thức lượng vào Δ vuông ABO đường cao BE có:
⇒ AB = 20
⇒ OA2 = AB2 + OB2 = 625⇒AO = 25
c) Ta có:
BH ⊥ OC ⇒ BH//AC ⇒
⇒ BC là phân giác
d) Gọi BD ∩ AC = F
Ta có: FB ⊥ BC, AB = AC
⇒ A là trung điểm CF
⇒ AF = AC
Mà BH ⊥ CD
⇒ BH // CF
⇒
⇒ IB = IH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Để hoàn thành một công việc hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc?
Câu 2:
Câu 4:
Một công ty cần thuê xe để chở 120 người và 6,5 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó loại xe A có 9 chiếc và loại xe B có 8 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng; mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là thấp nhất?
Câu 5:
Chứng minh điểm G là trọng tâm của tam giác ABC khi và chỉ khi .
về câu hỏi!