Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2kg nguyên liệu và 30 giờ, đem lại mức lời 40000 đồng. Mỗi kg sản phẩm loại II cần 4kg nguyên liệu và 15giờ, đem lại mức lời 30000 đồng. Xưởng có 200kg nguyên liệu và 1200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm lần lượt là bao nhiêu để có mức lời cao nhất?
Quảng cáo
Trả lời:

+ Gọi x (x ≥ 0) là số kg loại I cần sản xuất, y (y ≥ 0) là số kg loại II cần sản xuất.
Suy ra số nguyên liệu cần dùng là 2x + 4y, thời gian là 30x + 15y có mức lời là 40 000x + 30 000y
Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 1200 giờ làm việc suy ra
2x + 4y ≤ 200 hay x + 2y – 100 ≤ 0 ; 30x + 15y ≤ 1200 hay 2x+ y – 80 ≤ 0
+ Tìm x; y thoả mãn hệ (*)
sao cho L(x; y) = 40 000x + 30 000y đạt giá trị lớn nhất.
Trong mặt phẳng tọa độ vẽ các đường thẳng (d): x + 2y – 100= 0 và (d’) : 2x + y – 80 = 0
Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ
Giá trị lớn nhất của L( x; y) đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)
+ Ta có L(0; 0) = 0; L( 40; 0) = 1 600 000;
L(0; 50) = 1 500 000; L(20; 40) = 2 000 000
Suy ra giá trị lớn nhất của L(x; y) là 2 000 000 khi (x; y) = (20; 40).
Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1 cm3 = 10-3 dm3 = 10-6 m3 = 0,000001 m3
Như vậy để đổi cm3 sang m3 trên máy tính ta lấy đơn vị cm3 nhân với 10-6 hoặc chia cho 1000000.
Lời giải
Gọi thời gian tổ I hoàn thành công việc riêng là x (x > 0, giờ),
thời gian tổ II hoàn thành công việc riêng là y (y > 0, giờ)
Trong 1 giờ, tổ I làm được (công việc)
Trong 1 giờ, tổ II làm được (công việc)
Trong 1 giờ, cả 2 tổ làm được (công việc)
Nên ta có phương trình: (1)
Trong 10 giờ, tổ I làm được (công việc)
Vì sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I hoàn thành công việc còn lại trong 10 giờ nên ta có phương trình:
⇔ 2. + = 1
⇔ x = 15
Thay vào (1) tìm được y = 10
Vậy thời gian tổ I hoàn thành công việc riêng là 15 giờ.
thời gian tổ II hoàn thành công việc một mình là 10 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.