Câu hỏi:

12/07/2024 1,617

Cho tam giác ABC vuông tại A có AB = 15, AC = 20.

a) Tính tỉ số lượng giác của B.

b) Vẽ đường cao AH. Tính độ dài các đoạn AH, HB, HC.

c) Gọi D và E lần lượt là trung điểm của BH và AH .Tia CE cắt AD tại M. Chứng minh CM =AM. cosACM^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Ta có ΔABC vuông tại A

BC2 = AB2 + AC2 = 625

BC = 25

sinB =ACBC=45,cosB=ABBC=35,tanB=43,cotB=34

b) Ta có AH BC

AH.BC = AB.AC(= 2SABC)

AH = AB.ACBC=12

HB = AB2AH2=9,  HC = BC – HB = 25 – 9 = 16

c) Ta có D, E là trung điểm HB, HA

DE là đường trung bình ΔHAB

DE // AB

DE AC vì ABAC

Mà AH BC AH CD, AH ∩ DE = E

E là trực tâm ΔADC CE AD

CM AD

⇒ AMC^=90°

cosACM^ CMAC

CM = AC.cos

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Giả sử: Đường thẳng (d) có vectơ chỉ phương  u=a;b

 đường thẳng (d) có vectơ pháp tuyến n=b;a  hoặc n=b;a

Câu 2

Lời giải

1 cm3 = 10-3 dm3 = 10-6 m3 = 0,000001 m3

Như vậy để đổi cm3 sang m3 trên máy tính ta lấy đơn vị cm3 nhân với 10-6 hoặc chia cho 1000000.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP