Câu hỏi:

12/07/2024 11,965

Cho điểm M nằm ngoài đường tròn ( O; R ) sao cho OM = 2R. Từ M kẻ các tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm ). Kẻ đường kính AC của đường tròn (O). Gọi H là giao điểm của AB và OM.

a) Chứng minh 4 điểm : O, A, B, M cùng thuộc 1 đường tròn.

b) Tính tỉ số OHOM .

c) Gọi E là giao điểm của CM và đường tròn (O). Chứng minh HE vuông góc với BE.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Vì MA, MB là tiếp tuyến của (O)

MA OA ⇒ MAO^ = 90°

MB OB ⇒ MBO^  = 90°

MAO^+MBO^= 90° + 90° = 180°

OAMB là tứ giác nội tiếp

 O, A, B, M cùng thuộc 1 đường tròn (đpcm)

b) Vì MA, MB là tiếp tuyến của (O) kẻ từ M 

M cách đều A, B mà O cách đều A, B

MO là trung trực của AB

MO AB tại H , H là trung điểm AB

Tam giác OAM vuông tại A có đường cao AH

Suy ra: OA2 = OH.OM

OH = R22R=R2

⇒ OHOM=R22R=14

c) Áp dụng hệ thức lượng trong tam giác MAO vuông có: MA2 = MH.MO (1)

MA là tiếp tuyến nên: MAE^=MCA^  (cùng chắn cung AE)

Xét ∆MAE và ∆MCA có: MAE^=MCA^

AMC^ chung

Suy ra: ∆MAE ~ ∆MCA (g.g)

 MAME=MCMA hay MA2 = MC.ME (2)

Từ (1) và (2): MC.ME = MH.MO

⇒ MHME=MCMO

Xét ∆MHE và ∆MCO có:

OMC^ chung

MHME=MCMO

∆MHE ~ ∆MCO (c.g.c)

⇒ MHE^=MOC^

180° – MHE^  = 180° MOC^  hay HEC^=AOM^

Lại có: BEAC là tứ giác nội tiếp (O) do 4 điểm đều nằm trên đường tròn nên BEC^=BAC^  (cùng nhìn cạnh BC)

Lại có theo phần a: OBMA là tứ giác nội tiếp nên OMB^=BAO^ ABO^=OMA^

Suy ra: BEC^=OMB^

Lại có: ABO^=OMB^ (Cùng phụ với MBA^ )

Mà ABO^=OMA^

Suy ra:  BEC^=OMA^

HEB^=HEC^+BEC^=AOM^+OMA^

= 90°

Vậy HE vuông góc với BE.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Để hoàn thành một công việc hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc?

Xem đáp án » 12/07/2024 36,481

Câu 2:

Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg chất A và 9kg chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và 0,6kg chất B. Từ mỗi tấn nguyên liệu loại II giá triệu đồng có thể chiết xuất được 10kg chất A và 1,5kg chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại

Xem đáp án » 12/07/2024 31,335

Câu 3:

Cách đổi từ vecto chỉ phương sang vecto pháp tuyến

Xem đáp án » 12/07/2024 26,120

Câu 4:

Một công ty cần thuê xe để chở 120 người và 6,5 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó loại xe A có 9 chiếc và loại xe B có 8 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng; mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là thấp nhất?

Xem đáp án » 12/07/2024 24,905

Câu 5:

Chứng minh điểm G là trọng tâm của tam giác ABC khi và chỉ khi GA+GB+GC=0 .

Xem đáp án » 13/07/2024 17,301

Câu 6:

Cách đổi cm3 sang m3.

Xem đáp án » 13/07/2024 13,404

Câu 7:

Tìm tập giá trị của hàm số y = tanx?

Xem đáp án » 12/07/2024 12,579

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store