Câu hỏi:

20/09/2023 291

Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2030 và hiệu của số lớn và số bé bằng 30.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi số lớn là x (x > 30,x ℕ), số bé là y (y ℕ)

Ta có tổng của hai số là 2030 nên ta có phương trình x + y = 2030 (1)

Hiệu của số lớn và số bé là 30 nên ta có phương trình x ‒ y = 30 (2)

Từ (1) và (2) ta có hệ phương trình:

\[\left\{ \begin{array}{l}x + y = 2030\\x - y = 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x = 2060\\x - y = 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1030\\y = 1000\end{array} \right.\](Thỏa mãn)

Vậy số lớn là 1030, số bé là 1000.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 60 độ, SA = a và SA (ảnh 1)

Ta có: AB // (SCD)

d(B; (SCD)) = d(A; (SCD)) = d

Kẻ AH CD; AK SH

\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SA}\\{CD \bot AH}\end{array} \Rightarrow CD \bot \left( {SAH} \right)} \right.\)

CD AK AK (SCD)

d(B; (SCD)) = d = AK.

Xét ∆AHD vuông tại H, \[\widehat {ADH} = 60^\circ \]

ta có: \(AH = AD \cdot {\rm{sin}}60^\circ = \frac{{a\sqrt 3 }}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SHA vuông tại A có đường cao AK ta có: \(AK = \frac{{SA \cdot AH}}{{\sqrt {S{A^2} + A{H^2}} }}\)\( = \frac{{a \cdot \frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7} = d.\)

Câu 2

Lời giải

Đáp án đúng là: D

Sin x = 1 \[x = \frac{\pi }{2} + k2\pi .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP