Câu hỏi:

20/09/2023 191

Elip (E) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có tâm sai bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Phương trình chính tắc của elip có dạng (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,(a,b > 0)\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} = 25}\\{{b^2} = 9}\\{{c^2} = {a^2} - {b^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 5}\\{b = 3}\\{c = 4}\end{array}} \right.} \right.\)

Vậy tâm sai của Elip \(e = \frac{c}{a} = \frac{4}{5}\)

Đáp án cần chọn là: \({\rm{A}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 60 độ, SA = a và SA (ảnh 1)

Ta có: AB // (SCD)

d(B; (SCD)) = d(A; (SCD)) = d

Kẻ AH CD; AK SH

\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SA}\\{CD \bot AH}\end{array} \Rightarrow CD \bot \left( {SAH} \right)} \right.\)

CD AK AK (SCD)

d(B; (SCD)) = d = AK.

Xét ∆AHD vuông tại H, \[\widehat {ADH} = 60^\circ \]

ta có: \(AH = AD \cdot {\rm{sin}}60^\circ = \frac{{a\sqrt 3 }}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SHA vuông tại A có đường cao AK ta có: \(AK = \frac{{SA \cdot AH}}{{\sqrt {S{A^2} + A{H^2}} }}\)\( = \frac{{a \cdot \frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7} = d.\)

Câu 2

Lời giải

Đáp án đúng là: D

Sin x = 1 \[x = \frac{\pi }{2} + k2\pi .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP