Câu hỏi:
20/09/2023 447Giá trị nhỏ nhất Fmin của biểu thức F(x; y) = y – x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
\[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y - 2x - 2 \le 0\\2y - x - 4 \ge 0\\x + y - 5 \le 0\end{array} \right.\] (*)
Trong mặt phẳng tọa độ Oxy vẽ các đường thẳng d1:y − 2x − 2=0, d2: 2y − x− 4= 0, d3: x + y − 5 = 0.
Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng (tam giác ABC kể cả biên) tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ (*) là
A(0; 2), B(2; 3), C(1; 4).
Ta có: \[\left\{ \begin{array}{l}F\left( {0;2} \right) = 2\\F\left( {2;3} \right) = 1\\F\left( {1;4} \right) = 3\end{array} \right.\]
Suy ra Fmin = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số \(y = \frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}}\)và y =|x+2|−x + m (m là tham số thực) có đồ thị lần lượt là (C1) và (C2). Tập hợp tất cả các giá trị của m để (C1) và (C2) cắt nhau tại đúng bốn điểm phân biệt là:
Câu 2:
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \[\widehat {BAD} = 60^\circ ,\] SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng:
Câu 3:
Đồ thị hàm số \[y = \frac{{ax + 2}}{{cx + b}}\] như hình vẽ bên. Chọn khẳng định đúng?
Câu 4:
Cho hàm số y = 3x4 − 2mx2 + 2m + m4. Tìm tất cả các giá trị của m để đồ thị hàm số đã cho có ba điểm cực trị tạo thành tam giác có diện tích bằng 3.
Câu 5:
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2(x4 ‒ 1) + m(x2 ‒ 1) ‒ 6(x ‒ 1) ≥ 0 đúng với mọi x ∈ ℝ. Tổng giá trị của tất cả các phần tử thuộc S bằng:
Câu 6:
Cho hình bình hành ABCD, I là giao điểm hai đường chéo. Khi đó, khẳng định nào sau đây là đúng?
về câu hỏi!