Câu hỏi:

20/09/2023 403

Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = x4 ‒ 2mx2 có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(y' = 4{x^3} - 4mx = 4x\left( {{x^2} - m} \right);y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} = m\left( {\rm{*}} \right)}\end{array}} \right.\)

Để hàm số có ba điểm cực trị m > 0.

Khi đó tọa độ ba điểm cực trị của đồ thị hàm số là:

\(A\left( {0;0} \right),B\left( {\sqrt m ; - {m^2}} \right),C\left( { - \sqrt m ; - {m^2}} \right)\).

Tam giác ABC cân tại A, suy ra \({S_{\Delta ABC}} = \frac{1}{2}d\left( {A,BC} \right) \cdot BC\) \( = \frac{1}{2}{m^2} \cdot 2\sqrt m = {m^2}\sqrt m \).

Theo bài ra, ta có \({S_{\Delta ABC}} < 1 \Leftrightarrow {m^2}\sqrt m < 1 \Leftrightarrow 0 < m < 1\left( {TM} \right)\)

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 60 độ, SA = a và SA (ảnh 1)

Ta có: AB // (SCD)

d(B; (SCD)) = d(A; (SCD)) = d

Kẻ AH CD; AK SH

\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SA}\\{CD \bot AH}\end{array} \Rightarrow CD \bot \left( {SAH} \right)} \right.\)

CD AK AK (SCD)

d(B; (SCD)) = d = AK.

Xét ∆AHD vuông tại H, \[\widehat {ADH} = 60^\circ \]

ta có: \(AH = AD \cdot {\rm{sin}}60^\circ = \frac{{a\sqrt 3 }}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SHA vuông tại A có đường cao AK ta có: \(AK = \frac{{SA \cdot AH}}{{\sqrt {S{A^2} + A{H^2}} }}\)\( = \frac{{a \cdot \frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7} = d.\)

Câu 2

Lời giải

Đáp án đúng là: D

Sin x = 1 \[x = \frac{\pi }{2} + k2\pi .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP