Câu hỏi:
20/09/2023 330Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = x4 ‒ 2mx2 có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(y' = 4{x^3} - 4mx = 4x\left( {{x^2} - m} \right);y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} = m\left( {\rm{*}} \right)}\end{array}} \right.\)
Để hàm số có ba điểm cực trị⇔ m > 0.
Khi đó tọa độ ba điểm cực trị của đồ thị hàm số là:
\(A\left( {0;0} \right),B\left( {\sqrt m ; - {m^2}} \right),C\left( { - \sqrt m ; - {m^2}} \right)\).
Tam giác ABC cân tại A, suy ra \({S_{\Delta ABC}} = \frac{1}{2}d\left( {A,BC} \right) \cdot BC\) \( = \frac{1}{2}{m^2} \cdot 2\sqrt m = {m^2}\sqrt m \).
Theo bài ra, ta có \({S_{\Delta ABC}} < 1 \Leftrightarrow {m^2}\sqrt m < 1 \Leftrightarrow 0 < m < 1\left( {TM} \right)\)
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số \(y = \frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}}\)và y =|x+2|−x + m (m là tham số thực) có đồ thị lần lượt là (C1) và (C2). Tập hợp tất cả các giá trị của m để (C1) và (C2) cắt nhau tại đúng bốn điểm phân biệt là:
Câu 2:
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \[\widehat {BAD} = 60^\circ ,\] SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng:
Câu 3:
Đồ thị hàm số \[y = \frac{{ax + 2}}{{cx + b}}\] như hình vẽ bên. Chọn khẳng định đúng?
Câu 4:
Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4, \[\widehat {BAC} = 30^\circ \]. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM = 2MA. Diện tích thiết diện của (P) và hình chóp S.ABC bằng bao nhiêu?
Câu 5:
Cho hàm số y = 3x4 − 2mx2 + 2m + m4. Tìm tất cả các giá trị của m để đồ thị hàm số đã cho có ba điểm cực trị tạo thành tam giác có diện tích bằng 3.
Câu 6:
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2(x4 ‒ 1) + m(x2 ‒ 1) ‒ 6(x ‒ 1) ≥ 0 đúng với mọi x ∈ ℝ. Tổng giá trị của tất cả các phần tử thuộc S bằng:
Câu 7:
Cho hình bình hành ABCD, I là giao điểm hai đường chéo. Khi đó, khẳng định nào sau đây là đúng?
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!