Câu hỏi:

20/09/2023 230 Lưu

yếu tố nào sau đây xác định một mặt phẳng

A. Hai đường thẳng cắt nhau.

B. Ba điểm phân biệt.

C. Bốn điểm phân biệt.

D. Một điểm và một đường thẳng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

A sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.

B sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ta chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

D sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm mặt phẳng không đồng phẳng thì sẽ tạo không tạo được mặt phẳng nào đi qua cả 4 điểm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 60 độ, SA = a và SA (ảnh 1)

Ta có: AB // (SCD)

d(B; (SCD)) = d(A; (SCD)) = d

Kẻ AH CD; AK SH

\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SA}\\{CD \bot AH}\end{array} \Rightarrow CD \bot \left( {SAH} \right)} \right.\)

CD AK AK (SCD)

d(B; (SCD)) = d = AK.

Xét ∆AHD vuông tại H, \[\widehat {ADH} = 60^\circ \]

ta có: \(AH = AD \cdot {\rm{sin}}60^\circ = \frac{{a\sqrt 3 }}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SHA vuông tại A có đường cao AK ta có: \(AK = \frac{{SA \cdot AH}}{{\sqrt {S{A^2} + A{H^2}} }}\)\( = \frac{{a \cdot \frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7} = d.\)

Câu 2

A. \[x = - \frac{\pi }{2} + k2\pi .\]

B. \[x = \frac{\pi }{2} + k\pi .\]

C. \[x = k\pi .\]

D. \[x = \frac{\pi }{2} + k2\pi .\]

Lời giải

Đáp án đúng là: D

Sin x = 1 \[x = \frac{\pi }{2} + k2\pi .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP