Câu hỏi:

20/09/2023 962

Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A'BC) bằng \[\frac{a}{6}\]Thể tích khối lăng trụ bằng

Mệnh đề nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều cạnh a (ảnh 1)

Gọi M là trung điểm của BC và H là hình chiếu của A trên A’M.

Ta có :

\(\left. {\begin{array}{*{20}{c}}{BC \bot AM}\\{BC \bot AA'}\end{array}} \right\}\) BC (AA’M) BC AH    (1).

Mà AH A’M   (2).

Từ (1) và (2) d(A, (A’BC)) = AH.

Ta có:  \(\frac{{d\left( {O,\left( {A'BC} \right)} \right)}}{{d\left( {A,\left( {A'BC} \right)} \right)}} = \frac{{MO}}{{MA}} = \frac{1}{3}\) (do tính chất trọng tâm).

\( \Rightarrow d\left( {A,\left( {A'BC} \right)} \right) = 3d\left( {O,\left( {A'BC} \right)} \right) = \frac{a}{2}\)

\( \Rightarrow AH = \frac{a}{2}\)

Xét tam giác vuông A'AM :

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{A^{{\rm{'}}2}}}} + \frac{1}{{A{M^2}}}\)

\( \Leftrightarrow \frac{1}{{A{A^{{\rm{'}}2}}}} = \frac{4}{{{a^2}}} - \frac{4}{{3{a^2}}} \Leftrightarrow AA' = \frac{{a\sqrt 3 }}{{2\sqrt 2 }}\)

Suy ra thể tích lăng trụ ABC.A’B’C’ là:

\(V = AA' \cdot {S_{\Delta ABC}} = \frac{{a\sqrt 3 }}{{2\sqrt 2 }} \cdot \frac{{{a^2}\sqrt 3 }}{4} = \frac{{3\sqrt 2 {a^3}}}{{16}}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 60 độ, SA = a và SA (ảnh 1)

Ta có: AB // (SCD)

d(B; (SCD)) = d(A; (SCD)) = d

Kẻ AH CD; AK SH

\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SA}\\{CD \bot AH}\end{array} \Rightarrow CD \bot \left( {SAH} \right)} \right.\)

CD AK AK (SCD)

d(B; (SCD)) = d = AK.

Xét ∆AHD vuông tại H, \[\widehat {ADH} = 60^\circ \]

ta có: \(AH = AD \cdot {\rm{sin}}60^\circ = \frac{{a\sqrt 3 }}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SHA vuông tại A có đường cao AK ta có: \(AK = \frac{{SA \cdot AH}}{{\sqrt {S{A^2} + A{H^2}} }}\)\( = \frac{{a \cdot \frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7} = d.\)

Lời giải

Đáp án đúng là: B

Xét phương trình hoành độ giao điểm của hai đồ thị hàm số ta có:

\(\frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}} = \left| {x + 2} \right| - x + m\)

\( \Leftrightarrow \frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}} - \left| {x + 2} \right| + x = m\)

Xét hàm số \(f\left( x \right) = \frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}} - \left| {x + 2} \right| + x\) có TXĐ: D = ℝ {‒1; 0; 1; 2}.

\(f'\left( x \right) = \frac{1}{{{{(x - 2)}^2}}} + \frac{1}{{{{(x - 1)}^2}}} + \frac{1}{{{x^2}}} + \frac{1}{{{{(x + 1)}^2}}} - \frac{{x + 2}}{{\left| {x + 2} \right|}} + 1\)

\( = \frac{1}{{{{(x - 2)}^2}}} + \frac{1}{{{{(x - 1)}^2}}} + \frac{1}{{{x^2}}} + \frac{1}{{{{(x + 1)}^2}}} + \frac{{\left| {x + 2} \right| - \left( {x + 2} \right)}}{{\left| {x + 2} \right|}}\)

\( \Rightarrow f'\left( x \right) > 0\forall x \in D\)

Do \(\left| {x + 2} \right| \ge x + 2\forall x \Rightarrow \left| {x + 2} \right| - \left( {x + 2} \right) \ge 0 \Leftrightarrow \frac{{\left| {x + 2} \right| - \left( {x + 2} \right)}}{{\left| {x + 2} \right|}} \ge 0\)

\( \Rightarrow f'\left( x \right) > 0\forall x \in D \Rightarrow \) Hàm số đồng biến trên từng khoảng xác định của nó.

Ta có bảng biến thiên:

Cho hai hàm số y = (x - 3) / (x - 2) + (x - 2) / (x - 1) + (x - 1)  x + x / (x + 1) và (ảnh 1)

Từ bảng biến thiên ta thấy phương trình f(x) = m có đúng 4 nghiệm phân biệt khi và chỉ khi m 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Nghiệm của phương trình sin x = 1 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay