Câu hỏi:
13/07/2024 5,623
Tập xác định của hàm số y = log0,5(2x – x2) là:
A. (–∞; 0) ∪ (2; +∞).
B. ℝ \{0; 2}.
C. [0; 2].
D. (0; 2).
Tập xác định của hàm số y = log0,5(2x – x2) là:
A. (–∞; 0) ∪ (2; +∞).
B. ℝ \{0; 2}.
C. [0; 2].
D. (0; 2).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Hàm số y = log0,5(2x – x2) xác định ⇔ 2x – x2 > 0
⇔ x2 – 2x < 0 ⇔ x(x – 2) < 0
⇔ 0 < x < 2.
Vậy tập xác định của y = log0,5(2x – x2) là (0; 2).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Vì 0 < 0,5 < 1 nên hàm số y = (0,5)x nghịch biến trên ℝ;
Vì nên hàm số nghịch biến trên ℝ;
Vì nên hàm số đồng biến trên ℝ;
Vì nên hàm số nghịch biến trên ℝ.
Vậy ta chọn đáp án C.
Lời giải
Đáp án đúng là: C
Hàm số y = logax nghịch biến trên tập xác định của nó khi 0 < a < 1.
Mà
Suy ra hàm số nghịch biến trên tập xác định của nó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.