Câu hỏi:

13/07/2024 3,583

Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c?

A. c < a < b.

B. c < b < a.

C. a < b < c.

D. b < c < a.

Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Từ các đồ thị hàm số trên Hình 15 ta thấy:

Hàm số y = logax đồng biến trên (0; +∞) nên a > 1;

Hai hàm số y = logbx và y = logcx nghịch biến trên (0; +∞) nên 0 < b < 1; 0 < c < 1.

Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c? (ảnh 2)

Thay cùng giá trị của x = x0 (với x0 (0; +∞)) vào hai hàm số ta thấy logbx0 > logcx0

Mà 0 < b < 1; 0 < c < 1 nên b < c.

Suy ra b < c < a.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Vì 0 < 0,5 < 1 nên hàm số y = (0,5)x nghịch biến trên ℝ;

0<23<1  nên hàm số y=23x  nghịch biến trên ℝ;

2>1  nên hàm số y=2x  đồng biến trên ℝ;

0<eπ<1  nên hàm số y=eπx  nghịch biến trên ℝ.

Vậy ta chọn đáp án C.

Lời giải

Đáp án đúng là: C

Hàm số y = logax nghịch biến trên tập xác định của nó khi 0 < a < 1.

Mà 3>1,3>1,π>1,0<1e<1

Suy ra hàm số y=log1ex  nghịch biến trên tập xác định của nó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP