Xác định hệ số a của hàm số y = ax, biết rằng đồ thị của nó đi qua điểm:
a) M(3; 9); b) N(– 4; 1).
Xác định hệ số a của hàm số y = ax, biết rằng đồ thị của nó đi qua điểm:
a) M(3; 9); b) N(– 4; 1).
Quảng cáo
Trả lời:
Lời giải
a) Vì đồ thị hàm số y = ax đi qua điểm M(3; 9) nên 9 = 3a Û a = 3
Vậy a = 3.
b) Vì đồ thị hàm số y = ax đi qua điểm N(–4; 1) nên \[1 = - 4a \Leftrightarrow a = - \frac{1}{4}\].
Vậy \[a = - \frac{1}{4}\].Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Đồ thị của hàm số y = 3x + 6 trên mặt phẳng toạ độ Oxy được vẽ như hình sau:

b) A là giao điểm của đồ thị hàm số trên với trục Ox nên A(–2; 0);
B là giao điểm của đồ thị hàm số trên với trục Oy nên B(0; 6),
Diện tích tam giác AOB là:
\[{S_{AOB}} = \frac{1}{2}.OA.OB = \frac{1}{2}.6.2 = 6\,\,\left( {c{m^2}} \right)\]
Vậy A(–2; 0), B(0; 6) và \[{S_{AOB}} = 6\,\,c{m^2}\].
Lời giải
Lời giải
a) Trục tung là đường thẳng: x = 0.
Thay x = 0 vào y = 2 – 4x ta được: y = 2 – 4.0 = 2
Vậy toạ độ giao điểm của đồ thị hàm số y = 2 – 4x và trục tung là A(0; 2).
b) Trục hoành là đường thẳng: y = 0
Xét phương trình hoành độ giao điểm:
2 – 4x = 0 Û 4x = 2 \[ \Leftrightarrow x = \frac{1}{2}\].
Vậy toạ độ giao điểm của đồ thị hàm số y = 2 – 4x và trục hoành là \[B\left( {\frac{1}{2};0} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.