Câu hỏi:
13/07/2024 1,053Đồ thị của hàm số (a là hằng số dương) là một đường hypebol. Chứng minh rằng tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục tọa độ một tam giác có diện tích không đổi.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có: .
Phương trình tiếp tuyến của hypebol tại điểm có hoành độ x0 (x0 ≠ 0) là
.
Giả sử phương trình tiếp tuyến này cắt hai trục tọa độ lần lượt tại A, B.
Khi đó, .
Do đó diện tích tam giác OAB bằng: không đổi (do a là hằng số dương).
Vậy tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Viết phương trình tiếp tuyến của đồ thị hàm số y = x3 + 3x2 – 1 tại điểm có hoành độ bằng 1.
Câu 2:
Cho hàm số y = x3 – 3x2 + 4x – 1 có đồ thị là (C). Hệ số góc nhỏ nhất của tiếp tuyến tại một điểm M trên đồ thị (C) là
Câu 3:
Vị trí của một vật chuyển động thẳng được cho bởi phương trình: s = f(t) = t3 – 6t2 + 9t, trong đó t tính bằng giây và s tính bằng mét.
a) Tính vận tốc của vật tại các thời điểm t = 2 giây và t = 4 giây.
b) Tại những thời điểm nào vật đứng yên?
Câu 4:
Cho hàm số f(x) thỏa mãn f(1) = 2 và f'(x) = x2f(x) với mọi x. Tính f''(1).
Câu 5:
Cho hàm số f(x) = x2e–2x. Tập nghiệm của phương trình f'(x) = 0 là
Câu 6:
Chuyển động của một vật có phương trình s(t) = , ở đó s tính bằng centimét và thời gian t tính bằng giây. Tại các thời điểm vận tốc bằng 0, giá trị tuyệt đối của gia tốc của vật gần với giá trị nào sau đây nhất?
về câu hỏi!