Câu hỏi:

13/07/2024 2,537

Đồ thị của hàm số y=ax  (a là hằng số dương) là một đường hypebol. Chứng minh rằng tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục tọa độ một tam giác có diện tích không đổi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: .

Phương trình tiếp tuyến của hypebol tại điểm có hoành độ x0 (x0 ≠ 0) là

yax0=ax02xx0   hay  y=ax02x+2ax0.

Giả sử phương trình tiếp tuyến này cắt hai trục tọa độ lần lượt tại A, B.

Khi đó, A0;2ax0,  B2x0;0  .

Do đó diện tích tam giác OAB bằng: 12OA.OB=122ax0.2x0=2a   không đổi (do a là hằng số dương).

Vậy tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: y' = 3x2 + 6x y'(1) = 3 . 12 + 6 . 1 = 9.

Ngoài ra, f(1) = 13 + 3 . 12 – 1 = 3 nên phương trình tiếp tuyến cần tìm là:

y – 3 = 9(x – 1) hay y = 9x – 6.

Lời giải

a) Ta có: v(t) = s'(t) = 3t2 – 12t + 9.

Vận tốc của vật tại thời điểm t = 2 giây là v(2) = 3 . 22 – 12 . 2 + 9 = –3 (m/s).

Vận tốc của vật tại thời điểm t = 4 giây là v(4) = 3 . 42 – 12 . 4 + 9 = 9 (m/s).

b) Khi vật đứng yên ta có: v(t) = 0 3t2 – 12t + 9 = 0 t = 1 hoặc t = 3.

Vậy tại thời điểm 1 giây hoặc 3 giây thì vật đứng yên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP