Câu hỏi:
11/07/2024 1,532Với giả thiết như ở Ví dụ 3, Cho hình chóp S.ABCD có đáy là hình chữ nhật và SA ^ (ABCD). Gọi B', C', D' tương ứng là hình chiếu của A trên SB, SC, SD. Chứng minh rằng:
a) Các mặt phẳng (AB'C'D') và (ABCD) cùng vuông góc với (SAC);
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Vì B', C', D' tương ứng là hình chiếu của A trên SB, SC, SD nên AB' ^ SB, AC' ^ SC, AD' ^ SD.
Vì SA ^ (ABCD) nên SA ^ BC, SA ^ CD.
Do ABCD là hình chữ nhật nên BC ^ AB, CD ^ AD.
Vì SA ^ BC và BC ^ AB nên BC ^ (SAB), suy ra (SBC) ^ (SAB).
Vì .
Vì SA ^ CD và CD ^ AD nên CD ^ (SAD), suy ra (SCD) ^ (SAD).
Vì .
Vì và nên SC ^ (AB'C'D') mà SC Ì (SAC) nên (SAC) ^ (AB'C'D').
Vì SA ^ (ABCD) mà SA Ì (SAC) nên (SAC) ^ (ABCD).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Tính độ dài đường chéo của hình lập phương.
Câu 2:
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng . Tính số đo góc nhị diện [S, BC, A].
Câu 4:
Cho hình chóp đều S.ABC, đáy có cạnh bằng a, cạnh bên bằng b.
a) Tính sin của góc tạo bởi cạnh bên và mặt đáy.
Câu 5:
Cho hình chóp S.ABC có SA ^ (ABC). Gọi H là hình chiếu của A trên BC.
a) Chứng minh rằng (SAB) ^ (ABC) và (SAH) ^ (SBC).
Câu 6:
Cho hình chóp S.ABC có SA ^ (ABC), AB = AC = a, . Gọi M là trung điểm của BC.
a) Chứng minh rằng là một góc phẳng của góc nhị diện [S, BC, A].
Câu 7:
Các mặt bên của lăng trụ đứng là các hình gì và các mặt bên đó có vuông góc với mặt đáy không? Vì sao?
về câu hỏi!