Câu hỏi:
20/10/2023 688Tháp lớn tại Bảo tàng Louvre ở Paris (H.7.66) (với kết cấu kính và kim loại) có dạng hình chóp với đáy là hình vuông có cạnh bằng 34 m, các cạnh bên bằng nhau và có độ dài xấp xỉ 32,3 m (theo Wikipedia.org).
Giải thích vì sao hình chiếu của đỉnh trên đáy là tâm của đáy tháp.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Giả sử tháp có dạng hình chóp S.ABCD với đáy là hình vuông và các cạnh bên bằng nhau.
Theo đề có: AB = BC = CD = DA = 34 m, SA = SB = SC = SD » 32,3 m.
Gọi O là hình chiếu của S trên mặt đáy nên SO ^ (ABCD).
Xét tam giác SOB vuông tại O nên ;
Xét tam giác SOD vuông tại O nên ;
Xét tam giác SOA vuông tại O nên ;
Xét tam giác SOC vuông tại O nên .
Mà SA = SB = SC = SD nên OA = OB = OC = OD hay O là tâm đường tròn ngoại tiếp hình vuông ABCD, do đó O là tâm của hình vuông.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Tính độ dài đường chéo của hình lập phương.
Câu 2:
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng . Tính số đo góc nhị diện [S, BC, A].
Câu 4:
Cho hình chóp đều S.ABC, đáy có cạnh bằng a, cạnh bên bằng b.
a) Tính sin của góc tạo bởi cạnh bên và mặt đáy.
Câu 5:
Cho hình chóp S.ABC có SA ^ (ABC). Gọi H là hình chiếu của A trên BC.
a) Chứng minh rằng (SAB) ^ (ABC) và (SAH) ^ (SBC).
Câu 6:
Cho hình chóp S.ABC có SA ^ (ABC), AB = AC = a, . Gọi M là trung điểm của BC.
a) Chứng minh rằng là một góc phẳng của góc nhị diện [S, BC, A].
Câu 7:
Các mặt bên của lăng trụ đứng là các hình gì và các mặt bên đó có vuông góc với mặt đáy không? Vì sao?
về câu hỏi!