Câu hỏi:
20/10/2023 1,233b) Giả sử tam giác ABC vuông tại A, , AC = a, . Tính số đo của góc nhị diện [S, BC, A].
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
b) Vì BC ^ (SAH) nên BC ^ SH mà AH ^ BC nên là góc phẳng nhị diện của góc nhị diện [S, BC, A].
Xét tam giác ABC vuông tại A, , AC = a có:
.
Xét tam giác ABC vuông tại A, có
.
Vì SA ^ (ABC) nên SA ^ AH.
Xét tam giác SAH vuông tại A có: .
Vậy số đo của góc nhị diện [S, BC, A] bằng 45°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Tính độ dài đường chéo của hình lập phương.
Câu 2:
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng . Tính số đo góc nhị diện [S, BC, A].
Câu 4:
Cho hình chóp đều S.ABC, đáy có cạnh bằng a, cạnh bên bằng b.
a) Tính sin của góc tạo bởi cạnh bên và mặt đáy.
Câu 5:
Cho hình chóp S.ABC có SA ^ (ABC). Gọi H là hình chiếu của A trên BC.
a) Chứng minh rằng (SAB) ^ (ABC) và (SAH) ^ (SBC).
Câu 6:
Cho hình chóp S.ABC có SA ^ (ABC), AB = AC = a, . Gọi M là trung điểm của BC.
a) Chứng minh rằng là một góc phẳng của góc nhị diện [S, BC, A].
Câu 7:
Các mặt bên của lăng trụ đứng là các hình gì và các mặt bên đó có vuông góc với mặt đáy không? Vì sao?
về câu hỏi!