Câu hỏi:

20/10/2023 2,419

b) Giả sử tam giác ABC vuông tại A, ABC^=30°  , AC = a, SA=a32. Tính số đo của góc nhị diện [S, BC, A].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Vì BC ^ (SAH) nên BC ^ SH mà AH ^ BC nên SHA^  là góc phẳng nhị diện của góc nhị diện [S, BC, A].

Xét tam giác ABC vuông tại A, ABC^=30° , AC = a có: tanABC^=ACAB

AB=ACtanABC^=atan30°=a3.

Xét tam giác ABC vuông tại A, có 1AH2=1AB2+1AC2=13a2+1a2=43a2

AH=a32.

Vì SA ^ (ABC) nên SA ^ AH.

Xét tam giác SAH vuông tại A có: tanSHA^=SAAH=a32a32=1SHA^=45°  .

Vậy số đo của góc nhị diện [S, BC, A] bằng 45°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi a là góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang.

Vì độ dốc của đường thẳng dành cho người khuyết tật được quy định là không quá 112  nên tanα112α4,76° .

Vậy góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang không vượt quá 4,76°.

Lời giải

b) Áp dụng định lí Côsin cho tam giác ABC, có:

BC2=AB2+AC22ABACcosBAC^=a2+a22aacos120°.

=2a2+2a212=3a2BC=a3

Vì M là trung điểm của BC nên BM=MC=a32  .

Xét tam giác AMB vuông tại M, có AM=AB2BM2=a23a24=a2

Vì SA ^ (ABC) nên SA ^ AM.

Xét tam giác SAM vuông tại A, có: tanSMA^=SAAM=a23a2=13SMA^=30° .

Vậy số đo của góc nhị diện [S, BC, A] bằng 30°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP