Câu hỏi:

11/07/2024 2,003 Lưu

c) Gọi O là tâm của hình vuông ABCD. Chứng minh rằng COC'^  là một góc phẳng của góc nhị diện [C, BD, C']. Tính (gần đúng) số đo của các góc nhị diện [C, BD, C'], [A, BD,C'].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c) Vì BD ^ (ACC'A') nên BD ^ C'O mà CO ^ BD (do AC ^ BD) nên là góc phẳng nhị diện của góc nhị diện [C, BD, C'].

Do ABCD là hình vuông nên O là trung điểm của AC, suy ra AO=OC=AC2=a22  .

Xét tam giác C'CO vuông tại C, có tanC'OC^=CC'CO=aa22=2C'OC^55°  .

Vậy số đo của các góc nhị diện [C, BD, C'] khoảng 55°.

Vì AO ^ BD (do AC ^ BD), BD ^ C'O nên AOC'^  là góc phẳng nhị diện của góc nhị diện [A, BD,C'].

Vì AOC'^+C'OC^=180°  nên AOC'^=180°C'OC^180°55°=125°  .

Vậy số đo góc nhị diện [A, BD,C'] khoảng 125°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi a là góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang.

Vì độ dốc của đường thẳng dành cho người khuyết tật được quy định là không quá 112  nên tanα112α4,76° .

Vậy góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang không vượt quá 4,76°.

Lời giải

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. a) Tính độ dài đường chéo của hình lập phương. (ảnh 1)

a) Vì ABCD.A'B'C'D' là hình lập phương nên có các mặt là hình vuông.

Xét tam giác ABC vuông tại B, có AC=AB2+BC2=a2+a2=a2  .

Vì AA' ^ (ABCD) nên AA' ^ AC.

Xét tam giác A'AC vuông tại A, có A'C=AA'2+AC2=a2+2a2=a3  .

Vậy đường chéo của hình lập phương có độ dài là a3  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP