Câu hỏi:

13/07/2024 10,227

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Kẻ AM vuông góc với SB tại M và AN vuông góc với SC tại N. Chứng minh rằng:

a) BC (SAB);

b) AM (SBC);

c) SC (AMN).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông (ảnh 1)
a) Vì SA (ABC) nên SA BC mà AB BC (do tam giác ABC vuông tại B). Do đó BC (SAB).

b) Vì BC (SAB) nên BC  AM, mà AM  SB (giả thiết). Do đó AM (SBC).

c) Vì AM (SBC) nên AM SC, mà AN SC (giả thiết). Do đó SC ^ (AMN).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lăng trụ tam giác ABC.A'B'C' có AA' vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Chứng minh rằng:

a) BB' (A'B'C');

b) B'C' (ABB'A').

Xem đáp án » 13/07/2024 5,976

Câu 2:

Cho hình chóp S.ABC có SA ^ (ABC), tam giác ABC nhọn. Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng:

a) BC (SAH) và các đường thẳng AH, BC, SK đồng quy;

b) SB (CHK) và HK (SBC).

Xem đáp án » 13/07/2024 3,683

Câu 3:

c) 1OH2=1OA2+1OB2+1OC2.

Xem đáp án » 13/07/2024 2,331

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Chứng minh rằng:

a) SO (ABCD);

b) AC (SBD) và BD (SAC).

Xem đáp án » 13/07/2024 1,996

Câu 5:

Cho tứ diện ABCD có AB = AC và DB = DC. Chứng minh rằng AD BC.

Xem đáp án » 12/07/2024 743

Câu 6:

b) H là trực tâm của tam giác ABC;

Xem đáp án » 12/07/2024 403

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn